A156368 A ménage triangle.
1, 0, 1, 0, 1, 1, 1, 1, 3, 1, 3, 8, 6, 6, 1, 16, 35, 38, 20, 10, 1, 96, 211, 213, 134, 50, 15, 1, 675, 1459, 1479, 915, 385, 105, 21, 1, 5413, 11584, 11692, 7324, 3130, 952, 196, 28, 1, 48800, 103605, 104364, 65784, 28764, 9090, 2100, 336, 36, 1
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 1, 1; 1, 1, 3, 1; 3, 8, 6, 6, 1; 16, 35, 38, 20, 10, 1; 96, 211, 213, 134, 50, 15, 1;
References
- A. Kaufmann, Introduction à la combinatorique en vue des applications, p.188-189, Dunod, Paris, 1968. - Philippe Deléham, Apr 04 2014
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Programs
-
Mathematica
T[n_,k_]:= Sum[(-1)^(k+j)*Binomial[j, k]*Binomial[2*n-j, j]*(n-j)!, {j,0,n}]; Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 05 2021 *)
-
Sage
def A156368(n,k): return sum( (-1)^(k+j)*binomial(j, k)*binomial(2*n-j, j)*factorial(n-j) for j in (0..n) ) flatten([[A156368(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 05 2021
Formula
T(n, k) = Sum_{j=0..n} (-1)^(k+j)*binomial(j, k)*binomial(2*n-j, j)*(n-j)!.
T(n, 0) = A000271(n).
Sum_{k=0..n} T(n, k) = n!.
G.f.: 1/(1 +x -x*y -x/(1 +x -x*y -x/(1 +x -x*y -2*x/(1 +x -x*y -2*x/(1 +x -x*y -3*x/(1 +x -x*y -3*x/(1 +x -x*y -4*x/(1 + ... (continued fraction).
G.f.: Sum_{n>=0} n! * x^n/(1 + (1-y)*x)^(2*n+1). - Ira M. Gessel, Jan 15 2013