cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156368 A ménage triangle.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 1, 3, 1, 3, 8, 6, 6, 1, 16, 35, 38, 20, 10, 1, 96, 211, 213, 134, 50, 15, 1, 675, 1459, 1479, 915, 385, 105, 21, 1, 5413, 11584, 11692, 7324, 3130, 952, 196, 28, 1, 48800, 103605, 104364, 65784, 28764, 9090, 2100, 336, 36, 1
Offset: 0

Views

Author

Paul Barry, Feb 08 2009

Keywords

Examples

			Triangle begins:
   1;
   0,   1;
   0,   1,   1;
   1,   1,   3,   1;
   3,   8,   6,   6,  1;
  16,  35,  38,  20, 10,  1;
  96, 211, 213, 134, 50, 15,  1;
		

References

  • A. Kaufmann, Introduction à la combinatorique en vue des applications, p.188-189, Dunod, Paris, 1968. - Philippe Deléham, Apr 04 2014

Crossrefs

Programs

  • Mathematica
    T[n_,k_]:= Sum[(-1)^(k+j)*Binomial[j, k]*Binomial[2*n-j, j]*(n-j)!, {j,0,n}];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 05 2021 *)
  • Sage
    def A156368(n,k): return sum( (-1)^(k+j)*binomial(j, k)*binomial(2*n-j, j)*factorial(n-j) for j in (0..n) )
    flatten([[A156368(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 05 2021

Formula

T(n, k) = Sum_{j=0..n} (-1)^(k+j)*binomial(j, k)*binomial(2*n-j, j)*(n-j)!.
T(n, 0) = A000271(n).
Sum_{k=0..n} T(n, k) = n!.
Equals A155856*A007318^{-1}.
G.f.: 1/(1 +x -x*y -x/(1 +x -x*y -x/(1 +x -x*y -2*x/(1 +x -x*y -2*x/(1 +x -x*y -3*x/(1 +x -x*y -3*x/(1 +x -x*y -4*x/(1 + ... (continued fraction).
G.f.: Sum_{n>=0} n! * x^n/(1 + (1-y)*x)^(2*n+1). - Ira M. Gessel, Jan 15 2013