A156547 Decimal expansion of the central angle of a regular dodecahedron.
7, 2, 9, 7, 2, 7, 6, 5, 6, 2, 2, 6, 9, 6, 6, 3, 6, 3, 4, 5, 4, 7, 9, 6, 6, 5, 9, 8, 1, 3, 3, 2, 0, 6, 9, 5, 3, 9, 6, 5, 0, 5, 9, 1, 4, 0, 4, 7, 7, 1, 3, 6, 9, 0, 7, 0, 8, 9, 4, 9, 4, 9, 1, 4, 6, 1, 8, 1, 8, 8, 9, 9, 6, 6, 6, 7, 6, 7, 1, 3, 8, 7, 9, 5, 4, 8, 3, 4, 0, 7, 8, 1, 9, 4, 7, 3, 5, 0, 0, 2, 0, 8, 0, 9, 5
Offset: 1
Examples
arccos((1/3)*sqrt(5))=0.729727656226966..., or, in degrees, 41.810314895778598065857916730578259531014119535901347753...
Programs
-
Maple
evalf(arcsin(2/3)); # Robert FERREOL, Sep 14 2019
-
Mathematica
RealDigits[ArcCos[Sqrt[5]/3],10,120][[1]] (* Harvey P. Dale, Feb 23 2015 *)
-
PARI
asin(2/3) \\ Charles R Greathouse IV, May 28 2013
Formula
The dodecahedron has 12 faces and 20 vertices. To find the central angle, we need any neighboring pair of vertices. Here are all 20 vertices:
- (d,d,d) where d is 1 or -1 (that's 8 vertices);
- (0, d*(t-1),d*t), where d is 1 or -1 and d = golden ratio = (1+sqrt(5))/2;
- (d*(t-1), d*t, 0); and ((d*t,0,d*(t-1)).
An example of a neighboring pair is (1,1,1) and (0,t,t-1).
Apply the usual formula for the cosine of the angle between two vectors.
Equals 2 * arccot(phi^2), where phi is the golden ratio (A001622). - Amiram Eldar, Jul 06 2023
Comments