A156614 a(1)=2, a(n+1) is the smallest prime with sum of even digits >= sum of even digits of a(n).
2, 23, 29, 41, 43, 47, 61, 67, 83, 89, 181, 263, 269, 281, 283, 461, 463, 467, 487, 661, 683, 863, 881, 883, 887, 1889, 2683, 2687, 2689, 2861, 2887, 4861, 4889, 6689, 6863, 6869, 6883, 8681, 8689, 8861, 8863, 8867, 8887, 26881
Offset: 1
Examples
2, 23(2=2), 29(2=2), 41(4>2), 43(4=4), 61(6>4), 67(6=6), 83(8>6), 89(8=8), 181(8=8), 263(2+6=8), 269(2+6=2+6), 281(2+8>2+6), 283(2+8=2+8), 461(4+6=2+8), etc.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..100
Crossrefs
Cf. A000040.
Programs
-
Mathematica
t={}; max=0; Do[p=Prime[i]; If[(x=Total[Select[IntegerDigits[p],EvenQ[#] &]])>=max, max = x; AppendTo[t,p]],{i,3000}]; t (* Jayanta Basu, May 22 2013 *) sped[p_]:=Module[{d1=Total[Select[IntegerDigits[p],EvenQ]],p2=NextPrime[p]},While[ Total[ Select[ IntegerDigits[ p2],EvenQ]]
Harvey P. Dale, Jan 22 2024 *)
Extensions
Corrected (4861 inserted) by R. J. Mathar, May 15 2010
Comments