A156628 Square array, read by antidiagonals, where row n+1 is generated from row n by first removing terms in row n at positions 0 and {(m+1)*(m+2)/2-2, m>0} and then taking partial sums, starting with all 1's in row 0.
1, 1, 1, 3, 2, 1, 13, 7, 3, 1, 71, 33, 13, 4, 1, 461, 191, 71, 20, 5, 1, 3447, 1297, 461, 120, 28, 6, 1, 29093, 10063, 3447, 836, 181, 38, 7, 1, 273343, 87669, 29093, 6616, 1333, 270, 49, 8, 1, 2829325, 847015, 273343, 58576, 11029, 2150, 375, 61, 9, 1
Offset: 0
Examples
To generate the array, start with all 1's in row 0; from then on, obtain row n+1 from row n by first removing terms in row n at positions 0 and {(m+1)*(m+2)/2-2,m>0} and then taking partial sums. This square array A begins: (1), (1), 1, 1, (1), 1, 1, 1, (1), 1, 1, 1, 1, (1), 1, 1, 1, 1, 1, ...; (1), (2), 3, 4, (5), 6, 7, 8, (9), 10, 11, 12, 13, (14), 15, 16, ...; (3), (7), 13, 20, (28), 38, 49, 61, (74), 89, 105, 122, 140, (159),...; (13), (33), 71, 120, (181), 270, 375, 497, (637), 817, 1019, 1244, ...; (71), (191), 461, 836, (1333), 2150, 3169, 4413, (5906), 8001, ...; (461), (1297), 3447, 6616, (11029), 19030, 29483, 42775, (59324),...; (3447), (10063), 29093, 58576, (101351), 185674, 300329, 451277, ...; (29093), (87669), 273343, 573672, (1024949), 1982310, 3330651, ...; (273343), (847015), 2829325, 6159976, (11320359), 23009602, 39998897, ...; where terms in parenthesis at positions {0,1,4,8,13,..} in a row are removed before taking partial sums to obtain the next row. ... RELATION TO SPECIAL TRIANGLE. Triangle A104980 begins: 1; 1, 1; 3, 2, 1; 13, 7, 3, 1; 71, 33, 13, 4, 1; 461, 191, 71, 21, 5, 1; 3447, 1297, 461, 133, 31, 6, 1; 29093, 10063, 3447, 977, 225, 43, 7, 1; ... in which column 0 and column 1 are found in square array A. ... Matrix square of A104980 = triangle A104988 which begins: 1; 2, 1; 8, 4, 1; 42, 20, 6, 1; 266, 120, 38, 8, 1; 1954, 836, 270, 62, 10, 1; 16270, 6616, 2150, 516, 92, 12, 1; 151218, 58576, 19030, 4688, 882, 128, 14, 1; ... where column 1 and column 2 are also found in square array A.
Crossrefs
Programs
-
PARI
{T (n, k)=local (A=0, b=2, c=1, d=0); if (n==0, A=1, until (d>k, if (c==b* (b+1)/2-2, b+=1, A+=T (n-1, c); d+=1); c+=1)); A}