A156680
Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, gcd (A, B) = 1, A < BA020884(n)).
1, 7, 17, 7, 31, 49, 23, 71, 97, 47, 127, 161, 1, 79, 199, 241, 119, 287, 337, 17, 167, 391, 449, 223, 23, 511, 577, 41, 287, 647, 41, 721, 359, 799, 881, 73, 439, 967, 1057, 7, 527, 1151, 89, 1249, 113, 623, 1351, 1457, 727, 119, 1567, 1681, 31, 161, 839, 1799, 1921
Offset: 1
Examples
As the first four primitive Pythagorean triples (ordered by increasing A) are (3,4,5), (5,12,13), (7,24,25) and (8,15,17), then a(1)=4-3=1, a(2)=12-5=7, a(3)=24-7=17 and a(4)=15-8=7.
References
- Barning, F. J. M.; On Pythagorean and quasi-Pythagorean triangles and a generation process with the help of unimodular matrices. (Dutch), Math. Centrum Amsterdam Afd. Zuivere Wisk. ZW-001 (1963).
Links
- A. Hall, Genealogy of Pythagorean Triads, The Mathematical Gazette, Vol. 54, No. 390, (December 1970), pp. 377-379.
- Ron Knott, Right-angled Triangles and Pythagoras' Theorem
Programs
-
Mathematica
PrimitivePythagoreanTriplets[n_]:=Module[{t={{3,4,5}},i=4,j=5},While[i
Comments