cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156680 Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, gcd (A, B) = 1, A < BA020884(n)).

Original entry on oeis.org

1, 7, 17, 7, 31, 49, 23, 71, 97, 47, 127, 161, 1, 79, 199, 241, 119, 287, 337, 17, 167, 391, 449, 223, 23, 511, 577, 41, 287, 647, 41, 721, 359, 799, 881, 73, 439, 967, 1057, 7, 527, 1151, 89, 1249, 113, 623, 1351, 1457, 727, 119, 1567, 1681, 31, 161, 839, 1799, 1921
Offset: 1

Views

Author

Ant King, Feb 15 2009

Keywords

Comments

This sequence contains the differences in the legs of the primitive Pythagorean triples, sorted by shortest side (A020884). If a difference appears once then it must appear infinitely often, for if (m,n) generates a primitive triple with Abs(b-a)=d then so too does (2m+n,m). This corresponds to applying Hall's A matrix, and hence all horizontal lines in the Pythagorean family tree will contain families of primitive triples whose legs differ by the same amount. The sorted differences that can occur are in A058529.

Examples

			As the first four primitive Pythagorean triples (ordered by increasing A) are (3,4,5), (5,12,13), (7,24,25) and (8,15,17), then a(1)=4-3=1, a(2)=12-5=7, a(3)=24-7=17 and a(4)=15-8=7.
		

References

  • Barning, F. J. M.; On Pythagorean and quasi-Pythagorean triangles and a generation process with the help of unimodular matrices. (Dutch), Math. Centrum Amsterdam Afd. Zuivere Wisk. ZW-001 (1963).

Crossrefs

Programs

  • Mathematica
    PrimitivePythagoreanTriplets[n_]:=Module[{t={{3,4,5}},i=4,j=5},While[i
    				

Formula

a(n) = A156678(n) - A020884(n).