cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156684 The number of primitive Pythagorean triples A^2+B^2=C^2 with 0 < A < B < C and gcd(A,B)=1, and both legs less than n.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 15, 15, 15, 15, 16, 16
Offset: 1

Views

Author

Ant King, Feb 17 2009

Keywords

Comments

For large N, Benito and Varona have shown that a(N)~2/pi^2 Log(1+sqrt(2)).N +O(sqrt(N)). However, the approximations to a(N)/N are considerably more accurate than the error term suggests, and it certainly appears that the density of the primitive triples with both legs less than N tends towards 2/pi^2 Log(1+sqrt(2))=0.1786... as N becomes large.

Examples

			There are two primitive triples with both legs less than 14, specifically (3,4,5) and (5,12,13). Hence a(14)=2.
		

Crossrefs

Cf. Essentially partial sums of A024360.

Programs

  • Mathematica
    PrimitivePythagoreanTriplets[n_]:=Module[{t={{3,4,5}},i=4,j=5},While[iA024360/b024360.txt", "Table"], {, }][[;; 10000, 2]]] // Accumulate (* Jean-François Alcover, Mar 27 2020 *)