cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156719 a(n) = 144*n^2 - 127*n + 28.

Original entry on oeis.org

45, 350, 943, 1824, 2993, 4450, 6195, 8228, 10549, 13158, 16055, 19240, 22713, 26474, 30523, 34860, 39485, 44398, 49599, 55088, 60865, 66930, 73283, 79924, 86853, 94070, 101575, 109368, 117449, 125818, 134475, 143420, 152653, 162174, 171983, 182080, 192465, 203138
Offset: 1

Views

Author

Vincenzo Librandi, Feb 15 2009

Keywords

Comments

The continued fraction expansion of sqrt(a(n)) is [12n-6; {1, 2, 2, 2, 1, 24n-12}]. - Magus K. Chu, Sep 23 2022

Crossrefs

Cf. A156711.

Programs

  • Magma
    I:=[45, 350, 943]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
    
  • Mathematica
    LinearRecurrence[{3,-3,1},{45,350,943},40]
  • PARI
    a(n)=144*n^2-127*n+28 \\ Charles R Greathouse IV, Dec 23 2011

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(45 + 215*x + 28*x^2)/(1-x)^3.
576*a(n) + 1 = (288*n - 127)^2. - Vincenzo Librandi, Feb 09 2012
From Elmo R. Oliveira, Nov 13 2024: (Start)
E.g.f.: exp(x)*(144*x^2 + 17*x + 28) - 28.
a(n) = (9*n - 4)*(16*n - 7). (End)