A156753 Primes whose largest digit is equal to the sum of all the other digits.
11, 101, 167, 211, 257, 347, 431, 523, 541, 617, 743, 761, 853, 1021, 1087, 1153, 1201, 1373, 1427, 1483, 1531, 1571, 1607, 1733, 1861, 2011, 2053, 2141, 2237, 2251, 2273, 2383, 2411, 2417, 2503, 2521, 2741, 2833, 2851, 3041, 3137, 3371, 3407, 3511, 3823
Offset: 1
Examples
1571 is a prime in which the largest digit is equal to the sum of all the other digits.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Chris Caldwell, The First 1,000 Primes
Crossrefs
Cf. A000040.
Programs
-
Maple
A054055 := proc(n) max(op(convert(n,base,10))) ; end: A007953 := proc(n) add(d,d=convert(n,base,10)) ; end: for n from 1 to 800 do p := ithprime(n) ; if 2*A054055(p) = A007953(p) then printf("%d,",p) ; fi; od: # R. J. Mathar, Feb 20 2009
-
Mathematica
ldQ[n_]:=Module[{c=Sort[IntegerDigits[n]]},Total[Most[c]]==Last[c]]; Select[ Prime[Range[1000]],ldQ] (* Harvey P. Dale, Dec 26 2013 *)
Extensions
11 added in front and extended by R. J. Mathar, Feb 20 2009