A156769 a(n) = denominator(2^(2*n-2)/factorial(2*n-1)).
1, 3, 15, 315, 2835, 155925, 6081075, 638512875, 10854718875, 1856156927625, 194896477400625, 49308808782358125, 3698160658676859375, 1298054391195577640625, 263505041412702261046875, 122529844256906551386796875, 4043484860477916195764296875
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..250
Crossrefs
Programs
-
Magma
[Denominator(4^(n-1)/Factorial(2*n-1)): n in [1..25]]; // G. C. Greubel, Jun 19 2021
-
Maple
a := n ->(2*n-1)!*2^(add(i,i=convert(n-1,base,2))-2*n+2); # Peter Luschny, May 02 2009
-
Mathematica
a[n_] := Denominator[4^(n-1)/(2n-1)!]; Array[a, 15] (* Jean-François Alcover, Jun 20 2018 *)
-
Sage
[denominator(4^(n-1)/factorial(2*n-1)) for n in (1..25)] # G. C. Greubel, Jun 19 2021
Formula
a(n) = denominator( Product_{k=1..n-1} 2/(k*(2*k+1)) ).
G.f.: (1/2)*z^(1/2)*sinh(2*z^(1/2)).
From Johannes W. Meijer, May 24 2009: (Start)
a(n) = A049606(2*n-1). - Zhujun Zhang, May 29 2019
Comments