cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156769 a(n) = denominator(2^(2*n-2)/factorial(2*n-1)).

Original entry on oeis.org

1, 3, 15, 315, 2835, 155925, 6081075, 638512875, 10854718875, 1856156927625, 194896477400625, 49308808782358125, 3698160658676859375, 1298054391195577640625, 263505041412702261046875, 122529844256906551386796875, 4043484860477916195764296875
Offset: 1

Views

Author

Johannes W. Meijer, Feb 15 2009

Keywords

Comments

Resembles A036279, the denominators in the Taylor series for tan(x). The first difference occurs at a(12).
The numerators of the two formulas for this sequence lead to A001316, Gould's sequence.
Stephen Crowley indicated on Aug 25 2008 that a(n) = denominator(Zeta(2*n)/Zeta(1-2*n)) and here numerator((Zeta(2*n)/Zeta(1-2*n))/(2*(-1)^(n)*(Pi)^(2*n))) leads to Gould's sequence.
This sequence appears in the Eta and Zeta triangles A160464 and A160474. Its resemblance to the sequence of the denominators of the Taylor series for tan(x) led to the conjecture A156769(n) = A036279(n)*A089170(n-1). - Johannes W. Meijer, May 24 2009

Crossrefs

Cf. A036279 Denominators in Taylor series for tan(x).
Cf. A001316 Gould's sequence appears in the numerators.
Cf. A000265, A036279, A089170, A117972, A160464, A160469 (which resembles the numerators of the Taylor series for tan(x)), A160474. - Johannes W. Meijer, May 24 2009

Programs

  • Magma
    [Denominator(4^(n-1)/Factorial(2*n-1)): n in [1..25]]; // G. C. Greubel, Jun 19 2021
    
  • Maple
    a := n ->(2*n-1)!*2^(add(i,i=convert(n-1,base,2))-2*n+2); # Peter Luschny, May 02 2009
  • Mathematica
    a[n_] := Denominator[4^(n-1)/(2n-1)!];
    Array[a, 15] (* Jean-François Alcover, Jun 20 2018 *)
  • Sage
    [denominator(4^(n-1)/factorial(2*n-1)) for n in (1..25)] # G. C. Greubel, Jun 19 2021

Formula

a(n) = denominator( Product_{k=1..n-1} 2/(k*(2*k+1)) ).
G.f.: (1/2)*z^(1/2)*sinh(2*z^(1/2)).
From Johannes W. Meijer, May 24 2009: (Start)
a(n) = abs(A117972(n))/A000265(n).
a(n) = A036279(n)*A089170(n-1). (End)
a(n) = A049606(2*n-1). - Zhujun Zhang, May 29 2019