A156770 1 followed by least greater integer such that concatenation of a(n-1) and a(n) is prime.
1, 3, 7, 9, 11, 17, 21, 29, 39, 43, 49, 51, 53, 81, 91, 99, 103, 123, 127, 133, 153, 191, 227, 231, 241, 249, 253, 273, 281, 291, 293, 311, 323, 333, 337, 339, 341, 347, 359, 377, 387, 397, 427, 429, 431, 441, 443, 453, 461, 467, 471, 481, 489, 493, 523, 541
Offset: 1
Examples
The term immediately after 17 is 21 because 1721 is the first prime greater than 1717.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..10000
Programs
-
Maple
cat2 := proc(a,b) a*10^(max(1,ilog10(b)+1))+b ; end: A156770 := proc(n) option remember ; local a; if n = 1 then 1; else for a from procname(n-1)+1 do if isprime( cat2(procname(n-1),a) ) then RETURN(a) ; fi; od: fi; end: seq(A156770(n),n=1..80) ; # R. J. Mathar, Feb 20 2009
-
Mathematica
nxt[n_]:=Module[{k=n+2,idn=IntegerDigits[n]},While[!PrimeQ[ FromDigits[ Join[ idn, IntegerDigits[ k]]]],k = k+2];k]; NestList[nxt,1,60] (* Harvey P. Dale, Jul 09 2015 *)
-
Python
from sympy import isprime from itertools import islice def agen(): an = 1 while True: yield an s, an = str(an), an+1 while not isprime(int(s+str(an))): an += 1 print(list(islice(agen(), 56))) # Michael S. Branicky, Oct 17 2022
Extensions
More terms from R. J. Mathar, Feb 20 2009