cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156770 1 followed by least greater integer such that concatenation of a(n-1) and a(n) is prime.

Original entry on oeis.org

1, 3, 7, 9, 11, 17, 21, 29, 39, 43, 49, 51, 53, 81, 91, 99, 103, 123, 127, 133, 153, 191, 227, 231, 241, 249, 253, 273, 281, 291, 293, 311, 323, 333, 337, 339, 341, 347, 359, 377, 387, 397, 427, 429, 431, 441, 443, 453, 461, 467, 471, 481, 489, 493, 523, 541
Offset: 1

Views

Author

Gerald Hillier, Feb 15 2009, Mar 13 2010

Keywords

Examples

			The term immediately after 17 is 21 because 1721 is the first prime greater than 1717.
		

Programs

  • Maple
    cat2 := proc(a,b) a*10^(max(1,ilog10(b)+1))+b ; end: A156770 := proc(n) option remember ; local a; if n = 1 then 1; else for a from procname(n-1)+1 do if isprime( cat2(procname(n-1),a) ) then RETURN(a) ; fi; od: fi; end: seq(A156770(n),n=1..80) ; # R. J. Mathar, Feb 20 2009
  • Mathematica
    nxt[n_]:=Module[{k=n+2,idn=IntegerDigits[n]},While[!PrimeQ[ FromDigits[ Join[ idn, IntegerDigits[ k]]]],k = k+2];k]; NestList[nxt,1,60] (* Harvey P. Dale, Jul 09 2015 *)
  • Python
    from sympy import isprime
    from itertools import islice
    def agen():
        an = 1
        while True:
            yield an
            s, an = str(an), an+1
            while not isprime(int(s+str(an))): an += 1
    print(list(islice(agen(), 56))) # Michael S. Branicky, Oct 17 2022

Extensions

More terms from R. J. Mathar, Feb 20 2009