A156775 Number of iterations of x->(sigma(x)+phi(x))/2 until a non-integer or a previous term is reached, starting with x=n; a(n)=0 if this never happens.
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 1, 1, 2, 3, 2, 1, 4, 1, 3, 2, 4, 1, 3, 1, 1, 4, 3, 2, 1, 1, 4, 3, 2, 1, 9, 1, 3, 4, 2, 1, 7, 1, 1, 3, 2, 1, 8, 3, 2, 3, 2, 1, 4, 1, 8, 7, 1, 4, 3, 1, 2, 7, 6, 1, 1, 1, 4, 3, 4, 6, 5, 1, 2, 1, 2, 1, 5, 6, 5, 4, 3, 1, 9, 4, 3, 7, 6, 5, 4, 1, 1, 9, 1, 1, 5, 1, 9, 3
Offset: 1
Keywords
Examples
Let f(x)=(sigma(x)+phi(x))/2. For x=1 we have f(x) = (1+1)/2 = 1, i.e. after a(1)=1 iterations, the initial term 1 is encountered. For x=2 we have f(x) = (3+1)/2 = 2, so a(2)=1 for the same reason; idem for x=3 and x=5. For x=4 we have f(x) = (7+2)/2 = 9/2, the sequence "fractures" after a(4)=1 iterations. For x=6 we have f(x) = (12+2)/2 = 7, f(7) = (8+6)/2 = 7: after a(6)=2 iterations, there's a value already seen before.
Links
- Richard K. Guy, Divisors and desires, Amer. Math. Monthly, 104 (1997), 359-360.
Programs
-
Mathematica
f[n_] := If[IntegerQ[n], n, 0]; g[n_] := f[(DivisorSigma[1, n] + EulerPhi[n])/2]; a[n_] := Module[{s = NestWhileList[g, n, UnsameQ, All]}, Length[s] - If[s[[-1]] == 0, 2, 1]]; Array[a, 105] (* Amiram Eldar, Apr 01 2024 *)
-
PARI
A156775(n,u=[])={ until( denominator( n=(sigma(n)+eulerphi(n))/2)>1 || setsearch(u,n), u=setunion(u,Set(n)));#u }
Comments