cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156791 INVERTi transform of A006973.

Original entry on oeis.org

1, 1, 6, 7, 78, 420, 6872, 17253, 326552, 2680988, 33949242, 386091406, 5974089338, 67562271804, 1708769998136, 16983594666421, 329723068729854, 5611760457560028, 121573316570762036, 2099347805249971662, 50720938223339101844, 1008798617234428297708
Offset: 1

Views

Author

Gary W. Adamson, Feb 15 2009

Keywords

Examples

			The sequence begins (1, 1, ...); then for all further a(n), write (n-1) terms of A006973 backwards. Take the dot of the latter and the first (n-1) terms of sequence. Subtract from the next term of A006973.
Example: a(4) = 7 = (24 - (9, 2, 1) dot (1, 1, 6)) = 24 - 17.
		

Crossrefs

Programs

  • Mathematica
    A006973[n_]:= A006973[n]= If[n<4, Max[n-1, 0], (n-1)!*(1 + Sum[k*(-A006973[k]/k!)^(n/k), {k, Most[Divisors[n]]}])];
    S[n_, x_]:= Sum[A006973[j]*x^j, {j, 0, n+2}];
    Rest@With[{p = 100}, CoefficientList[Series[S[p,x]/(x + S[p,x]), {x,0,60}], x]] (* G. C. Greubel, Jun 10 2021 *)

Formula

INVERTi transform of (A006973 with offset 1) = (1, 2, 9, 24, 130, 720, ...).
Coefficients of ( S(n, x)/(x + S(n, x)) ), where S(n, x) = Sum_{j=0..n+2} A006973(j)*x^j. - G. C. Greubel, Jun 10 2021

Extensions

Terms a(11) onward added by G. C. Greubel, Jun 10 2021