A156823 Triangle T(n,k,2) read by rows (generalized q-Stirling numbers of second kind): T(n, k, q_) = (1/(q - 1)^k)*Sum[(-1)^(k - j)*q*Binomial[k + n, k -j] - Binomial[j + n, j, q - 1], {j, 0, k}], with q=2, where Binomial[,] is the Gaussian q-binomial coefficient as in A022166.
1, 1, 1, 1, 4, 13, 1, 11, 90, 670, 1, 26, 480, 7870, 122861, 1, 57, 2247, 77527, 2526198, 80189094, 1, 120, 9807, 695368, 46334382, 2999255160, 191467330714, 1, 247, 41176, 5924720, 798773822, 104443530554, 13455795711072, 1721026866650520, 1
Offset: 0
Examples
Triangle begins: {1}, {1, 1}, {1, 4, 13}, {1, 11, 90, 670}, {1, 26, 480, 7870, 122861}, {1, 57, 2247, 77527, 2526198, 80189094}, {1, 120, 9807, 695368, 46334382, 2999255160, 191467330714}, {1, 247, 41176, 5924720, 798773822, 104443530554, 13455795711072, 1721026866650520}, {1, 502, 169186, 49067150, 13310897072, 3498722283914, 905629978109142, 232656671284481730, 59546788896602477613}, {1, 1013, 686829, 400036769, 217729686031, 114758591845755, 59547270411289947, 30661311851453644647, 15727477144989414892230, 8051953156564494657274366}, {1, 2036, 2769657, 3233395880, 3525493671271, 3721338617555988, 3866476676171065671, 3986066951574453826080, 4093473968605655678972070, 4195675823040150254245701976, 4296294797725523713719072795542} ...
Links
- T. Kim, q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients, Russian Journal of Mathematical Physics, Volume 15, Number 1, March 2008, pp. 51-57, DOI:10.1134/S1061920808010068.
Crossrefs
Cf. A022166.
Programs
-
Mathematica
t[n_, m_] = If[m == 0, n!, Product[Sum[(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]]; b[n_, k_, m_] = If[n == 0, 1, t[n, m]/(t[k, m]*t[n - k, m])]; t1[n_, k_, q_] = (1/(q - 1)^k)*Sum[(-1)^(k - j)* Binomial[k + n, k - j]*b[j + n, j, q - 1], {j, 0, k}]; Table[Flatten[Table[Table[t1[n, k, m + 1], {k, 0, n}], {n, 0, 10}]], {m, 1, 15}]
Formula
t1(n, k, q_) = (1/(q - 1)^k)*Sum[(-1)^(k - j)*Binomial[k + n, k -j]*q-Binomial[j + n, j, q - 1], {j, 0, k}]; q=2; m=1.
Comments