A156835 Positive numbers y such that y^2 is of the form x^2+(x+833)^2 with integer x.
593, 595, 623, 637, 697, 707, 733, 833, 965, 1015, 1037, 1225, 1295, 1547, 1585, 1973, 2023, 2443, 2597, 3145, 3227, 3433, 4165, 5057, 5383, 5525, 6713, 7147, 8687, 8917, 11245, 11543, 14035, 14945, 18173, 18655, 19865, 24157, 29377, 31283, 32113
Offset: 1
Keywords
Examples
(-368, a(1)) = (-368, 593) is a solution: (-368)^2+(-368+833)^2 = 135424+216225 = 351649 = 593^2. (A129010(1), a(8)) = (0, 833) is a solution: 0^2+(0+833)^2 = 693889 = 833^2. (A129010(3), a(10)) = (168, 1015) is a solution: (168)^2+(168+833)^2 = 28224+1002001 = 1030225 = 1015^2.
Crossrefs
Programs
-
PARI
{forstep(n=-400, 26000, [3, 1], if(issquare(2*n^2+1666*n+693889, &k), print1(k, ",")))}
Formula
a(n) = 6*a(n-15)-a(n-30) for n > 30.
G.f.: (1-x)*(593 +1188*x+1811*x^2+2448*x^3+3145*x^4+3852*x^5+4585*x^6+5418*x^7+6383*x^8+7398*x^9+8435*x^10+9660*x^11+10955*x^12+12502*x^13+14087*x^14+12502*x^15+10955*x^16+9660*x^17+8435*x^18+7398*x^19+6383*x^20+5418*x^21+4585*x^22+3852*x^23+3145*x^24+2448*x^25+1811*x^26+1188*x^27+593*x^28)/(1-6*x^15+x^30).
Comments