cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156874 Number of Sophie Germain primes <= n.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 18 2009

Keywords

Comments

a(n) = Sum_{k=1..n} A156660(k).
a(n) = A156875(2*n+1).
Hardy-Littlewood conjecture: a(n) ~ 2*C2*n/(log(n))^2, where C2=0.6601618158... is the twin prime constant (see A005597).
The truth of the above conjecture would imply that there exists an infinity of Sophie Germain primes (which is also conjectured).
a(n) ~ 2*C2*n/(log(n))^2 is also conjectured by Hardy-Littlewood for the number of twin primes <= n.

Examples

			a(120) = #{2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113} = 11.
		

Crossrefs

Cf. A005384 Sophie Germain primes p: 2p+1 is also prime.
Cf. A092816.

Programs

  • Mathematica
    Accumulate[Table[Boole[PrimeQ[n]&&PrimeQ[2n+1]],{n,1,200}]] (* Enrique Pérez Herrero, Apr 26 2012 *)
    Accumulate[Table[If[AllTrue[{n,2n+1},PrimeQ],1,0],{n,200}]]

Formula

a(10^n)= A092816(n). - Enrique Pérez Herrero, Apr 26 2012

Extensions

Edited and commented by Daniel Forgues, Jul 31 2009