cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156909 G.f.: A(x) = 1 + x*exp( Sum_{k>=1} [A(-(-1)^k*x) - 1]^k/k ).

Original entry on oeis.org

1, 1, 1, 2, 3, 10, 18, 70, 135, 566, 1134, 4972, 10206, 46098, 96228, 443946, 938223, 4397730, 9382230, 44523232, 95698746, 458639492, 991787004, 4791683932, 10413763542, 50652087010, 110546105292, 540758574440, 1184422556700
Offset: 0

Views

Author

Paul D. Hanna, Mar 04 2009

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 10*x^5 + 18*x^6 + 70*x^7 + ...
...
A(x) = 1 + x*exp( [A(x)-1] + [A(-x)-1]^2/2 + [A(x)-1]^3/3 + [A(-x)-1]^4/4 + ...).
		

Crossrefs

Cf. A157674. - Paul D. Hanna, Mar 05 2009

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1,n,A=1+x*exp(-sum(k=1,n,(subst(A,x,(-1)^k*x+x*O(x^n))-1)^k/k))); polcoeff(A,n)}
    
  • PARI
    {a(n)=local(B=(7-sqrt(1-12*x^2+x^2*O(x^n)))/6);polcoeff(B+sqrt(B^2-B),n)} \\ Paul D. Hanna, Mar 05 2009

Formula

From Paul D. Hanna, Mar 05 2009: (Start)
G.f.: A(x) = B(x) + sqrt(12*B(x) - 12 - 3*x^2)/3
where B(x) = (7-sqrt(1-12*x^2))/6 = A(x)*A(-x) = (A(x)+A(-x))/2 = 1 + x^2/(4-3*B(x)).
Lim_{n->infinity} a(2n)/a(2n-1) = 12^(1/3); lim_{n->infinity} a(2n+1)/a(2n) = 12^(2/3). (End)
D-finite with recurrence: 288*(n-6)*(n-5)*(n-4)*(n-3)*a(n-5) + 24*(n-4)*(n-3)*(52*n^2-378*n+761)*a(n-3) + 2*(n-1)*(181*n^3-271*n^2-950*n+1752)*a(n-1) - (n-1)*(n+1)*(87*n^2+38*n+48)*a(n+1) + 4*(n+1)*(n+2)*(n+3)*(n-1)*a(n+3) = 0. - Georg Fischer, Jul 15 2025