A156927 FP3 polynomials related to the generating functions of the columns of the A156921 matrix.
1, 1, 1, -6, 29, 31, -283, 245, 298, -286, -108, 119, -3106, 29469, -104585, -220481, 3601363, -15487305, 34949165, -39821950, 4356011, 46881744, -51274736, 9005908, 14663472, -5205168, -1456704, -20736
Offset: 0
Examples
The first few rows of the "triangle" of the FP3(z,m) coefficients are: [1] [1, 1] [-6, 29, 31, -283, 245, 298, -286, -108] The first few FP3 polynomials are: FP3(z; m=0) = 1 FP3(z; m=1) = (1+z) FP3(z; m=2) = (-6+29*z+31*z^2-283*z^3+245*z^4+298*z^5-286*z^6-108*z^7) Some GF3(z;m) are: GF3(z;m=1) = z^2*(1+z)/((1-z)^4*(1-2*z)) GF3(z;m=2) = z^2*(-6+29*z+31*z^2-283*z^3+245*z^4+298*z^5-286*z^6-108*z^7)/((1-z)^7*(1-2*z)^4*(1-3*z))
Crossrefs
Formula
G.f.: GF3(z;m):= z^p*FP3(z;m)/Product_{k=0..m} (1-(k+1)*z)^(1+3*k).
Comments