A156933 FP4 polynomials related to the o.g.f.s of the columns of the A156925 matrix.
1, 1, 1, -11, 156, -627, 736, 591, -1116, -369, -6, 106, -2772, 76070, -1087552, 8632650, -40358780, 106452214, -99774996, -284430514, 1125952500, -1581820542, 737716032, 414532350, -357790500, -81870750, -1275750
Offset: 0
Examples
The first few rows of the "triangle" of the FP4(z;m) coefficients are: [1] [1, 1] [ -11, 156, -627, 736, 591, -1116, -369] The first few FP4 polynomials are: FP4(z; m=0) = 1 FP4(z; m=1) = (1+z) FP4(z; m=2) = ( -11+156*z-627*z^2+736*z^3+591*z^4-1116*z^5-369*z^6 ) Some GF4(z;m) are: GF4(z;m=1) = z*(1+z)/((1-3*z)*(1-z)^4) GF4(z;m=2) = z^2*(-11+156*z-627*z^2+736*z^3+591*z^4-1116*z^5-369*z^6)/((1-z)^7*(1-3*z)^4*(1-5*z))
Crossrefs
Formula
G.f.: GF4(z;m):= z^q*FP4(z;m) / Product_{k=0..m} (1-(2*m+1-(2*k))*z)^(3*k+1).
Comments