A156933
FP4 polynomials related to the o.g.f.s of the columns of the A156925 matrix.
Original entry on oeis.org
1, 1, 1, -11, 156, -627, 736, 591, -1116, -369, -6, 106, -2772, 76070, -1087552, 8632650, -40358780, 106452214, -99774996, -284430514, 1125952500, -1581820542, 737716032, 414532350, -357790500, -81870750, -1275750
Offset: 0
The first few rows of the "triangle" of the FP4(z;m) coefficients are:
[1]
[1, 1]
[ -11, 156, -627, 736, 591, -1116, -369]
The first few FP4 polynomials are:
FP4(z; m=0) = 1
FP4(z; m=1) = (1+z)
FP4(z; m=2) = ( -11+156*z-627*z^2+736*z^3+591*z^4-1116*z^5-369*z^6 )
Some GF4(z;m) are:
GF4(z;m=1) = z*(1+z)/((1-3*z)*(1-z)^4)
GF4(z;m=2) = z^2*(-11+156*z-627*z^2+736*z^3+591*z^4-1116*z^5-369*z^6)/((1-z)^7*(1-3*z)^4*(1-5*z))
A156935
G.f. of the z^2 coefficients of the FP2 in the third column of the A156925 matrix.
Original entry on oeis.org
-11, -108, -425, 720, 25678, 255048, 1901298, 12339600, 73794315, 418519612, 2289264465, 12207642976, 63925371180, 330387702160, 1691454191604, 8600517968736, 43516016460465, 219401923888740
Offset: 2
A156936
G.f. of the z^3 coefficients of the FP2 in the fourth column of the A156925 matrix.
Original entry on oeis.org
-6, -242, -7382, -130472, -1594852, -15166900, -119173924, -788897224, -4270968154, -15821839894, 13226522262, 1056215331024, 14319250065624, 147391347765784, 1340374086462424
Offset: 2
A156937
G.f. of the z^4 coefficients of the FP2 in the fifth column of the A156925 matrix.
Original entry on oeis.org
839, 48451, 1277794, 20499983, 217367668, 1310255037, -3988076346, -248575701031, -4423141531241, -58198384719342, -649357370614484, -6449481786729030, -58156975255481312
Offset: 3
Showing 1-4 of 4 results.
Comments