A280993 Primes such that the absolute value of the difference between the largest digit and the sum of all the other digits is a cube.
11, 19, 23, 43, 67, 89, 101, 109, 113, 131, 157, 167, 179, 197, 199, 211, 223, 241, 257, 263, 269, 311, 313, 331, 337, 347, 353, 359, 373, 379, 397, 421, 431, 449, 461, 463, 523, 541, 571, 593, 607, 617, 641, 643, 661, 683, 719, 733, 739, 743
Offset: 1
Examples
The prime 2731 is a term, because 7-2-3-1 = 1 is a cube. The prime 13 is not in the sequence, as 3-1 = 2, and 2 is not a cube. The prime 313 is a term because |3 - (1+3)| = 1 is a cube.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Prime[Range[150]],IntegerQ[Surd[Abs[Max[IntegerDigits[#]]-Total[ Most[ Sort[IntegerDigits[#]]]]],3]]&] (* Harvey P. Dale, Dec 31 2021 *)
-
PARI
listA280993(k, {k0=5})={my(H=List(), y); forprime(z=prime(k0), prime(k), y=digits(z); if(ispower(abs(vecsum(y)-2*vecmax(y)),3), listput(H, z))); return(vector(#H, i, H[i]))} \\ Looks for those belonging terms between prime(k0) and prime(k). - R. J. Cano, Feb 06 2017
Comments