cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157054 Number of integer sequences of length n+1 with sum zero and sum of absolute values 10.

Original entry on oeis.org

2, 30, 252, 1500, 7002, 27174, 91112, 271224, 731502, 1815506, 4197468, 9129276, 18827718, 37060506, 70006512, 127485584, 224676522, 384468534, 640622012, 1041949020, 1657762722, 2584888350, 3956576472, 5953712520, 8818775030, 12873059082, 18537751260
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n*(n+1)*(n^8 +4*n^7 +66*n^6 +184*n^5 +1089*n^4 +1876*n^3 +4604*n^2 +3696*n +2880)/14400, {n,50}] (* G. C. Greubel, Jan 23 2022 *)
  • Sage
    [n*(n+1)*(n^8 +4*n^7 +66*n^6 +184*n^5 +1089*n^4 +1876*n^3 +4604*n^2 +3696*n +2880)/14400 for n in (1..50)] # G. C. Greubel, Jan 23 2022

Formula

a(n) = T(n,5); T(n,k) = Sum_{i=1..n} binomial(n+1,i)*binomial(k-1,i-1)*binomial(n-i+k,k).
G.f.: 2*x*(1+4*x+16*x^2+24*x^3+36*x^4+24*x^5+16*x^6+4*x^7+x^8)/(1-x)^11. - Colin Barker, Mar 17 2012
From G. C. Greubel, Jan 23 2022: (Start)
a(n) = n*(n+1)*(n^8 +4*n^7 +66*n^6 +184*n^5 +1089*n^4 +1876*n^3 +4604*n^2 +3696*n +2880)/14400.
E.g.f.: (x/14400)*(28800 +187200*x +403200*x^2 +398400*x^3 +207840*x^4 +61200*x^5 +10400*x^6 +1000*x^7 +50*x^8 +x^9)*exp(x). (End)