cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157056 Number of integer sequences of length n+1 with sum zero and sum of absolute values 14.

Original entry on oeis.org

2, 42, 492, 4060, 26070, 137886, 623576, 2476296, 8809110, 28512110, 85014204, 235895244, 614266354, 1511679210, 3536846160, 7907476016, 16967926746, 35078339106, 70098276620, 135798494460, 255689552382, 468969729382, 839584669992, 1469778991800, 2520031983950
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n*(n+1)*(n^12 +6*n^11 +197*n^10 +930*n^9 +12363*n^8 +43938*n^7 +300551*n^6 +751710*n^5 +2756536*n^4 +4309656*n^3 +7816752*n^2 +5780160*n +3628800)/25401600, {n,50}] (* G. C. Greubel, Jan 24 2022 *)
  • Sage
    [n*(n+1)*(n^12 +6*n^11 +197*n^10 +930*n^9 +12363*n^8 +43938*n^7 +300551*n^6 +751710*n^5 +2756536*n^4 +4309656*n^3 +7816752*n^2 +5780160*n +3628800)/25401600 for n in (1..50)] # G. C. Greubel, Jan 24 2022

Formula

a(n) = T(n,7); T(n,k) = Sum_{i=1..n} binomial(n+1,i)*binomial(k-1,i-1)*binomial(n-i+k,k).
G.f.: 2*x*(1 +6*x +36*x^2 +90*x^3 +225*x^4 +300*x^5 +400*x^6 +300*x^7 +225*x^8 +90*x^9 +36*x^10 +6*x^11 +x^12)/(1-x)^15. - Colin Barker, Jan 25 2013
From G. C. Greubel, Jan 24 2022: (Start)
a(n) = n*(n+1)*(n^12 +6*n^11 +197*n^10 +930*n^9 +12363*n^8 +43938*n^7 +300551*n^6 +751710*n^5 +2756536*n^4 +4309656*n^3 +7816752*n^2 +5780160*n +3628800)/25401600.
E.g.f.: (x/25401600)*(50803200 +482630400*x +1574899200*x^2 +2472422400*x^3 +2176070400*x^4 +1169320320*x^5 +403683840*x^6 +92221920*x^7 +14129640*x^8 +1449420*x^9 +97608*x^10 +4116*x^11 +98*x^12 +x^13)*exp(x). (End)