A157056 Number of integer sequences of length n+1 with sum zero and sum of absolute values 14.
2, 42, 492, 4060, 26070, 137886, 623576, 2476296, 8809110, 28512110, 85014204, 235895244, 614266354, 1511679210, 3536846160, 7907476016, 16967926746, 35078339106, 70098276620, 135798494460, 255689552382, 468969729382, 839584669992, 1469778991800, 2520031983950
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1).
Programs
-
Mathematica
Table[n*(n+1)*(n^12 +6*n^11 +197*n^10 +930*n^9 +12363*n^8 +43938*n^7 +300551*n^6 +751710*n^5 +2756536*n^4 +4309656*n^3 +7816752*n^2 +5780160*n +3628800)/25401600, {n,50}] (* G. C. Greubel, Jan 24 2022 *)
-
Sage
[n*(n+1)*(n^12 +6*n^11 +197*n^10 +930*n^9 +12363*n^8 +43938*n^7 +300551*n^6 +751710*n^5 +2756536*n^4 +4309656*n^3 +7816752*n^2 +5780160*n +3628800)/25401600 for n in (1..50)] # G. C. Greubel, Jan 24 2022
Formula
a(n) = T(n,7); T(n,k) = Sum_{i=1..n} binomial(n+1,i)*binomial(k-1,i-1)*binomial(n-i+k,k).
G.f.: 2*x*(1 +6*x +36*x^2 +90*x^3 +225*x^4 +300*x^5 +400*x^6 +300*x^7 +225*x^8 +90*x^9 +36*x^10 +6*x^11 +x^12)/(1-x)^15. - Colin Barker, Jan 25 2013
From G. C. Greubel, Jan 24 2022: (Start)
a(n) = n*(n+1)*(n^12 +6*n^11 +197*n^10 +930*n^9 +12363*n^8 +43938*n^7 +300551*n^6 +751710*n^5 +2756536*n^4 +4309656*n^3 +7816752*n^2 +5780160*n +3628800)/25401600.
E.g.f.: (x/25401600)*(50803200 +482630400*x +1574899200*x^2 +2472422400*x^3 +2176070400*x^4 +1169320320*x^5 +403683840*x^6 +92221920*x^7 +14129640*x^8 +1449420*x^9 +97608*x^10 +4116*x^11 +98*x^12 +x^13)*exp(x). (End)