A157059 Number of integer sequences of length n+1 with sum zero and sum of absolute values 20.
2, 60, 1002, 11750, 106752, 794598, 5025692, 27717948, 135916002, 601585512, 2432878866, 9079799742, 31534801116, 102644594262, 315029394792, 916470530808, 2538818182782, 6724224543708, 17088309885542, 41800229045610, 98698280879352, 225524301678170
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (21,-210,1330,-5985,20349,-54264, 116280,-203490,293930,-352716, 352716,-293930,203490,-116280,54264,-20349,5985, -1330,210,-21,1).
Programs
-
Mathematica
A103881[n_, k_]:= (n+1)*Binomial[n+k-1, k]*HypergeometricPFQ[{1-n,-n,1-k}, {2,1-n-k}, 1]; A157059[n_]:= A103881[n,10]; Table[A157059[n], {n, 50}] (* G. C. Greubel, Jan 24 2022 *)
-
Sage
def A103881(n,k): return sum( binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k) for i in (0..n) ) def A157059(n): return A103881(n, 10) [A157059(n,10) for n in (1..50)] # G. C. Greubel, Jan 24 2022
Formula
a(n) = T(n,10); T(n,k) = Sum_{i=1..n} binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k).
G.f.: 2*x*(x^18 +9*x^17 +81*x^16 +324*x^15 +1296*x^14 +3024*x^13 +7056*x^12 +10584*x^11 +15876*x^10 +15876*x^9 +15876*x^8 +10584*x^7 +7056*x^6 +3024*x^5 +1296*x^4 +324*x^3 +81*x^2 +9*x +1)/(1-x)^21. - Colin Barker, Jan 25 2013
From G. C. Greubel, Jan 24 2022: (Start)
a(n) = (184756/20!)*n*(n+1)*(1316818944000 +2540101939200*n +3742987138560*n^2 +2615609097216*n^3 +1848671853984*n^4 +695217071376*n^5 +310567813984*n^6 +71342133912*n^7 +22639753938*n^8 +3337504857*n^9 +803922153*n^10 +76623228*n^11 +14628472*n^12 +873558*n^13 +136302*n^14 +4644*n^15 +606*n^16 +9*n^17 +n^18).
a(n) = (n+1)*binomial(n+9, 10)*Hypergeometric3F2([-9, -n, 1-n], [2, -n-9], 1). (End)