A157062 Number of integer sequences of length n+1 with sum zero and sum of absolute values 26.
2, 78, 1692, 25740, 302850, 2912910, 23744840, 168278760, 1056789450, 5968878630, 30684132468, 144977296932, 634756203018, 2593322651430, 9946019437200, 35995371261360, 123490242018990, 403237594259010, 1257743358034100, 3759426449644740, 10799525727846702
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (27,-351,2925,-17550,80730,-296010,888030,-2220075, 4686825,-8436285,13037895,-17383860,20058300,-20058300,17383860,-13037895, 8436285,-4686825,2220075,-888030,296010,-80730,17550,-2925,351,-27,1).
Programs
-
Mathematica
A103881[n_, k_]:= (n+1)*Binomial[n+k-1,k]*HypergeometricPFQ[{1-n,-n,1-k}, {2, 1-n - k}, 1]; A157062[n_]:= A103881[n, 13]; Table[A157062[n], {n, 50}] (* G. C. Greubel, Jan 24 2022 *)
-
Sage
def A103881(n,k): return sum( binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k) for i in (0..n) ) def A157062(n): return A103881(n, 13) [A157062(n) for n in (1..50)] # G. C. Greubel, Jan 24 2022
Formula
a(n) = T(n,13); T(n,k) = Sum_{i=1..n} binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k).
From G. C. Greubel, Jan 24 2022: (Start)
a(n) = (n+1)*binomial(n+12, 13)*Hypergeometric3F2([-12, -n, 1-n], [2, -n-12], 1).
a(n) = (10400600/26!)*n*(n+1)*(2982752926433280000 + 6502800338141184000*n + 10192999816651161600*n^2 + 8194549559065989120*n^3 + 6217354001317404672*n^4 + 2785907939555600640*n^5 + 1345736958526293696*n^6 + 386128480881709632*n^7 + 133329525393692848*n^8 + 26155830342678960*n^9 + 6893260441243396*n^10 + 955286585044572*n^11 + 200534847420673*n^12 + 19880275030680*n^13 + 3426180791086*n^14 + 242021337492*n^15 + 35027635423*n^16 + 1724131200*n^17 + 213288856*n^18 + 6959172*n^19 + 746383*n^20 + 14520*n^21 + 1366*n^22 + 12*n^23 + n^24).
G.f.: 2*x*(1 + 12*x + 144*x^2 + 792*x^3 + 4356*x^4 + 14520*x^5 + 48400*x^6 + 108900*x^7 + 245025*x^8 + 392040*x^9 + 627264*x^10 + 731808*x^11 + 853776*x^12 + 731808*x^13 + 627264*x^14 + 392040*x^15 + 245025*x^16 + 108900*x^17 + 48400*x^18 + 14520*x^19 + 4356*x^20 + 792*x^21 + 144*x^22 + 12*x^23 + x^24)/(1-x)^27. (End)