cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157068 Number of integer sequences of length n+1 with sum zero and sum of absolute values 38.

Original entry on oeis.org

2, 114, 3612, 80180, 1374690, 19234194, 227605448, 2335932504, 21186110970, 172295622730, 1271112537684, 8588601364668, 53573492643034, 310601807143530, 1683493452034320, 8573748834211984, 41210997268585158, 187693442844729174, 812839595630249540
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2009

Keywords

Crossrefs

Programs

Formula

a(n) = T(n,19); T(n,k) = Sum_{i=1..n} binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k).
From G. C. Greubel, Jan 25 2022: (Start)
a(n) = (n+1)*binomial(n+18, 19)*Hypergeometric3F2([-18, -n, 1-n], [2, -n-18], 1).
a(n) = (35345263800/38!)*n*(n+1)*(778817392288148379660189696000000 + 1984223956005743569581323059200000*n + 3392214823876583668626122342400000*n^2 + 3227079634641025484578928197632000*n^3 + 2701114821085872776574503662387200*n^4 + 1477486663626167257723210367631360*n^5 + 794678697494482855499280703586304*n^6 + 289485264886342590944226501328896*n^7 + 112195641614805001937808853208064*n^8 + 29309532027252333838411983247872*n^9 + 8732100429652853130168723017472*n^10 + 1708566742801697011435174735872*n^11 + 408081704870580048838437092992*n^12 + 61460345467484307832839519168*n^13 + 12123027157132710911533327584*n^14 + 14298582910205269163512480328n^15 + 238150505845545646647030204*n^16 + 222226805381963345901159308n^17 + 3179819458407554816818235*n^18 + 235823049245552968253250*n^19 + 29394217444775030780985*n^20 + 17315150592375085755608n^21 + 190160234133314656140*n^22 + 8844512620448927880*n^23 + 864030358357843740*n^24 + 31339517913669420*n^25 + 2745580274521866*n^26 + 76036376515644*n^27 + 6015727425006*n^28 + 122857968168*n^29 + 8831668028*n^30 + 125358408*n^31 + 8231808*n^32 + 72522*n^33 + 4371*n^34 + 18*n^35 + n^36).
G.f.: 2*x*(1 + 18*x + 324*x^2 + 2754*x^3 + 23409*x^4 + 124848*x^5 + 665856*x^6 + 2496960*x^7 + 9363600*x^8 + 26218080*x^9 + 73410624*x^10 + 159056352*x^11 + 344622096*x^12 + 590780736*x^13 + 1012766976*x^14 + 1392554592*x^15 + 1914762564*x^16 + 2127513960*x^17 + 2363904400*x^18 + 2127513960*x^19 + 1914762564*x^20 + 1392554592*x^21 + 1012766976*x^22 + 590780736*x^23 + 344622096*x^24 + 159056352*x^25 + 73410624*x^26 + 26218080*x^27 + 9363600*x^28 + 2496960*x^29 + 665856*x^30 + 124848*x^31 + 23409*x^32 + 2754*x^33 + 324*x^34 + 18*x^35 + x^36)/(1-x)^39. (End)