A157085 Consider all Consecutive Integer Pythagorean quintuples (X, X+1, X+2, Z-1, Z) ordered by increasing Z; sequence gives Z values.
2, 14, 134, 1322, 13082, 129494, 1281854, 12689042, 125608562, 1243396574, 12308357174, 121840175162, 1206093394442, 11939093769254, 118184844298094, 1169909349211682, 11580908647818722, 114639177128975534, 1134810862641936614, 11233469449290390602, 111199883630261969402
Offset: 0
Examples
a(3) = 134 since 108^2 + 109^2 + 110^2 = 133^2 + 134^2.
References
- A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, 1964, pp. 122-125.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. Dover Publications, Inc., Mineola, NY, 2005, pp. 181-183.
- W. Sierpinski, Pythagorean Triangles. Dover Publications, Mineola NY, 2003, pp. 16-22.
Links
- Paolo Xausa, Table of n, a(n) for n = 0..500
- Tanya Khovanova, Recursive Sequences
- Ron Knott, Pythagorean Triples and Online Calculators
- Index entries for linear recurrences with constant coefficients, signature (11,-11,1).
Programs
-
Mathematica
LinearRecurrence[{11, -11, 1}, {2, 14, 134}, 25] (* Paolo Xausa, May 29 2025 *)
-
PARI
for(y=0,oo,yy=(y+2)^2+(y+1)^2;for(x=sqrtint(yy\3),ceil(sqrt(yy/3)),x^2+(x-1)^2+(x-2)^2==yy&&print1(y+2,", "))) \\ For illustrative purpose. - M. F. Hasler, Oct 04 2014
Formula
For n > 1, a(n) = 10*a(n-1) - a(n-2) - 4; e.g., 1322 = 10*134 - 14 - 4.
Limit_{n->oo} a(n+1)/a(n) = 2*(1+sqrt(3/2))^2 = 5 + 2*sqrt(6).
G.f.: 2*(1-4*x+x^2)/((1-x)*(x^2-10*x+1)). - Colin Barker, Jan 01 2012
a(n) = 2*A253175(n+1). - R. J. Mathar, Feb 07 2022
Extensions
Edited by M. F. Hasler, Oct 04 2014
Comments