A157093 Consider all Consecutive Integer Pythagorean 9-tuples (X,X+1,X+2,X+3,X+4,Z-3,Z-2,Z-1,Z) ordered by increasing Z; sequence gives Z values.
4, 44, 764, 13684, 245524, 4405724, 79057484, 1418628964, 25456263844, 456794120204, 8196837899804, 147086288076244, 2639356347472564, 47361327966429884, 849864547048265324, 15250200518902345924, 273653744793193961284, 4910517205758588957164, 88115655958861407267644
Offset: 0
Examples
a(2)=764 since 680^2 + 681^2 + 682^2 + 683^2 + 684^2 = 761^2 + 762^2 + 763^2 + 764^2.
References
- A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, 1964, pp. 122-125.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. Dover Publications, Inc., Mineola, NY, 2005, pp. 181-183.
- W. Sierpinski, Pythagorean Triangles. Dover Publications, Mineola NY, 2003, pp. 16-22.
Links
- Paolo Xausa, Table of n, a(n) for n = 0..500
- Tanya Khovanova, Recursive Sequences
- Ron Knott, Pythagorean Triples and Online Calculators
- Index entries for linear recurrences with constant coefficients, signature (19,-19,1).
Programs
-
Mathematica
LinearRecurrence[{19, -19, 1}, {4, 44, 764}, 25] (* Paolo Xausa, May 29 2025 *)
Formula
For n > 1, a(n) = 18*a(n-1) - a(n-2) - 24.
For n > 0, a(n) = 10*A157092(n-1) + 9*a(n-1) + 8.
a(n) = 4^n*5*((1+sqrt(5/4))^(2*n+1) - (1-sqrt(5/4))^(2*n+1))/(4*sqrt(5/4)) + 3/2.
Limit_{n->oo} a(n+1)/a(n) = 4*(1+sqrt(5/4))^2 = 9 + 2*sqrt(20).
Empirical g.f.: 4*(1-8*x+x^2)/((1-x)*(1-18*x+x^2)). - Colin Barker, Mar 27 2012
Comments