cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157119 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+103)^2 = y^2.

Original entry on oeis.org

0, 84, 105, 309, 765, 884, 2060, 4712, 5405, 12257, 27713, 31752, 71688, 161772, 185313, 418077, 943125, 1080332, 2436980, 5497184, 6296885, 14204009, 32040185, 36701184, 82787280, 186744132, 213910425, 482519877, 1088424813, 1246761572
Offset: 1

Views

Author

Klaus Brockhaus, Feb 25 2009

Keywords

Comments

Corresponding values y of solutions (x, y) are in A157120.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (11+3*sqrt(2))/(11-3*sqrt(2)) for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))*(11-3*sqrt(2))^2/(11+3*sqrt(2))^2 for n mod 3 = 0.

Crossrefs

Cf. A157120, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A157121 (decimal expansion of 11+3*sqrt(2)), A157122 (decimal expansion of 11-3*sqrt(2)), A157123 (decimal expansion of (11+3*sqrt(2))/(11-3*sqrt(2))).

Programs

  • PARI
    {forstep(n=0, 1300000000, [1, 3], if(issquare(2*n^2+206*n+10609), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+206 for n > 6; a(1) = 0, a(2) = 84, a(3) = 105, a(4) = 309, a(5) = 765, a(6) = 884.
G.f.: x*(84+21*x+204*x^2-48*x^3-7*x^4-48*x^5)/((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 103*A001652(k) for k >= 0.