A157162 1/Product_{n>=1} (1 - a(n)*x^n) = 1 + Sum_{k>=1} F(k+1)*x^k = 1/(1-x-x^2), where F(n) = A000045(n) (Fibonacci numbers).
1, 1, 1, 1, 2, 2, 4, 5, 8, 10, 18, 24, 40, 52, 88, 125, 210, 286, 492, 702, 1144, 1638, 2786, 3986, 6704, 9640, 16096, 23964, 39650, 57794, 97108, 144245, 236880, 353010, 589298, 880828, 1459960, 2179068, 3604880, 5471094, 9030450, 13561742, 22542396, 34277634
Offset: 1
Examples
Recurrence I: a(2) = F(3) - a(1)^2 = 1; a(4) = F(5) - (a(1)*a(3) + a(2)^2 +a(1)^2*a(2) + a(1)^4) = 5 - 4 = 1. Recurrence II (simplified): a(4) = (-(a(1)^4 + 2*a(2)^2) + L(4))/4 = (-3 + 7)/4 = 1. Recurrence II: a(4)= (-(a(1)^4 + 2*a(2)^2)/4 + 1*1*F(5) - (1/2)*(2*F(2)*F(4)+ 1*F(3)^2) +(1/3)*3*F(2)^2*F(3)-(1/4)*1*F(2)^4 = -3/4 +7/4 = 1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..2000
- Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008.
- Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364.
- Giedrius Alkauskas, Algebraic functions with Fermat property, eigenvalues of transfer operator and Riemann zeros, and other open problems, arXiv:1609.09842 [math.NT], 2016.
- H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161.
- H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239.
- Wolfdieter Lang, Recurrences for the general problem.
Programs
-
Mathematica
a[n_] := a[n] = If[n == 1, 1, (-Sum[d a[d]^(n/d), {d, Most@ Divisors@ n}] + LucasL[n])/n]; Array[a, 50] (* Jean-François Alcover, Mar 02 2020 *)
Formula
Recurrence I. With P(n,m) the set of partitions of n with m parts:
a(n)= F(n+1) - sum(sum(product(a(j)^e(j),j=1..m), p from P(n,m)), m=2..n), n>=2, with sum(j*e(j),j=1..n)=n, sum(e(j),j=1..n)=m for the partition p of n with m parts. F(n) = A000045(n) (Fibonacci numbers). Input a(1)=F(2)=1. See the array A008284(n,m) for the cardinalities of the sets P(n,m).
Recurrence II (simplified version). With the Lucas numbers L(n)=A000035(n), n>=1, as input (found by V. Jovovic, Mar 10 2009):
a(n) = (- sum(d*a(d)^(n/d), d|n with 1<=d=2, a(1)=1.
Recurrence II. With the number array M0(n,vec(e)) given for any partition in A048996.
a(n) = - sum((d/n)*(a(d))^(n/d),d|n with 1<=d=2; a(1)=F(2)=1. See recurrence 1 for the set P(n,m). The M0 numbers are m!/product(e(j)!,j=1..n).
Comments