A290261
Write 1 - x/(1-x) as an inverse power product 1/(1 + a(1)*x) * 1/(1 + a(2)*x^2) * 1/(1 + a(3)*x^3) * 1/(1 + a(4)*x^4) * ...
Original entry on oeis.org
1, 2, 2, 6, 6, 10, 18, 54, 54, 114, 186, 334, 630, 1314, 2106, 5910, 7710, 15642, 27594, 57798, 97902, 207762, 364722, 712990, 1340622, 2778930, 4918482, 10437702, 18512790, 37500858, 69273666, 154021590, 258155910, 535004610, 981288906
Offset: 1
- Seiichi Manyama, Table of n, a(n) for n = 1..3333
- Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008.
- Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364.
- H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161.
- H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239.
- W. Lang, Recurrences for the general problem.
-
nn=20;Solve[Table[Expand[SeriesCoefficient[Product[1/(1+a[k]x^k),{k,n}],{x,0,n}]]==-1,{n,nn}],Table[a[n],{n,nn}]][[1,All,2]]
(* Second program: *)
A[m_, n_] := A[m, n] = Which[m == 1, 2^(n-1), m > n >= 1, 0, True, A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1] ];
a[n_] := A[n, n];
a /@ Range[1, 55] (* Petros Hadjicostas, Oct 04 2019, courtesy of Jean-François Alcover *)
A220418
Express 1 - x - x^2 - x^3 - x^4 - ... as product (1 + g(1)*x) * (1 + g(2)*x^2) *(1 + g(3)*x^3) * ... and use a(n) = - g(n).
Original entry on oeis.org
1, 1, 2, 3, 6, 8, 18, 27, 54, 84, 186, 296, 630, 1008, 2106, 3711, 7710, 12924, 27594, 48528, 97902, 173352, 364722, 647504, 1340622, 2382660, 4918482, 9052392, 18512790, 33361776, 69273666, 127198287, 258155910, 475568220, 981288906, 1814542704, 3714566310
Offset: 1
- Alois P. Heinz, Table of n, a(n) for n = 1..2000
- Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008.
- Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364.
- Fernando Casas, Ander Murua and Mladen Nadinic, Efficient computation of the Zassenhaus formula, Computer Physics Communications, 183 (2012), 2386-2391; arXiv:1204.0389 [math-ph], 2012.
- H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161.
- H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239.
- W. Lang, Recurrences for the general problem.
Cf.
A064535,
A147541,
A153881,
A157162,
A170908,
A170909,
A170910,
A170911,
A170912,
A170913,
A170914,
A170915,
A170916,
A170917,
A220420,
A273866,
A290261.
-
b:= proc(n, i) option remember; `if`(n=0 or i<1, 1,
b(n, i-1)+a(i)*b(n-i, min(n-i, i)))
end:
a:= proc(n) option remember; 2^n-b(n, n-1) end:
seq(a(n), n=1..40); # Alois P. Heinz, Jun 22 2018
-
b[n_, i_] := b[n, i] = If[n == 0 || i < 1, 1, b[n, i - 1] + a[i]*b[n - i, Min[n - i, i]]];
a[n_] := a[n] = 2^n - b[n, n - 1] ;
Array[a, 40] (* Jean-François Alcover, Jul 09 2018, after Alois P. Heinz *)
-
a(m) = {default(seriesprecision, m+1); gk = vector(m); pol = 1 + sum(n=1, m, -x^n); gk[1] = polcoeff( pol, 1); for (k=2, m, pol = taylor(pol/(1+gk[k-1]*x^(k-1)), x); gk[k] = polcoeff(pol, k, x);); for (k=1, m, print1(-gk[k], ", "););}
A273866
Coefficients a(k,m) of polynomials a{k}(h) appearing in the product Product_{k >= 1} (1 - a{k}(h)*x^k) = 1 - h*x/(1-x).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 3, 5, 5, 3, 1, 1, 3, 6, 7, 6, 3, 1, 1, 4, 9, 13, 13, 9, 4, 1, 1, 4, 10, 17, 20, 17, 10, 4, 1, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 5, 16, 36, 57, 66, 57, 36, 16, 5, 1
Offset: 1
a{1}(h) = h,
a{2}(h) = h,
a{3}(h) = h^2 + h,
a{4}(h) = h^3 + h^2 + h,
a{5}(h) = h^4 + 2*h^3 + 2*h^2 + h,
a{6}(h) = h^5 + 2*h^4 + 2*h^3 + 2*h^2 + h,
a{7}(h) = h^6 + 3*h^5 + 5*h^4 + 5*h^3 + 3*h^2 + h,
a{8}(h) = h^7 + 3*h^6 + 6*h^5 + 7*h^4 + 6*h^3 + 3*h^2 + h,
a{9}(h) = h^8 + 4*h^7 + 9*h^6 + 13*h^5 + 13*h^4 + 9*h^3 + 4*h^2 + h
...
and the corresponding a(k,m) table is:
1,
1,
1, 1,
1, 1, 1,
1, 2, 2, 1,
1, 2, 2, 2, 1,
1, 3, 5, 5, 3, 1,
1, 3, 6, 7, 6, 3, 1,
1, 4, 9, 13, 13, 9, 4, 1,
...
a(7,3) = 5 because there are six strict trees contributing positive one {{5,1},1}, {{4,2},1}, {{4,1},2}, {{3,2},2}, {4,{2,1}}, {{3,1},3} and there is one strict tree contributing negative one {4,2,1}. - _Gus Wiseman_, Nov 14 2016
- Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008.
- Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364.
- H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161.
- H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239.
- W. Lang, Recurrences for the general problem.
-
with(ListTools), with(numtheory), with(combinat);
L := product(1-a[k]*x^k, k = 1 .. 600);
S := Flatten([seq(-h, i = 1 .. 100)]);
Sabs := Flatten([seq(i, i = 1 .. 100)]);
seq(assign(a[i] = solve(coeff(L, x^i) = `if`(is(i in Sabs), S[Search(i, Sabs)], 0), a[i])), i = 1 .. 20);
map(coeffs, [seq(simplify(a[i]), i = 1 .. 20)]);
-
strictrees[n_Integer?Positive]:=Prepend[Join@@Function[ptn,Tuples[strictrees/@ptn]]/@Select[IntegerPartitions[n],And[Length[#]>1,UnsameQ@@#]&],n];
Table[Sum[(-1)^(Count[tree,,{0,Infinity}]-1),{tree,Select[strictrees[n],Length[Flatten[{#}]]===m&]}],{n,1,9},{m,1,n-1/.(0->1)}] (* _Gus Wiseman, Nov 14 2016 *)
(* second program *)
A[m_, n_] :=
A[m, n] =
Which[m == 1, -h, m > n >= 1, 0, True,
A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1]];
a[n_] := Expand[-A[n, n]];
a /@ Range[1, 25] (* Petros Hadjicostas, Oct 04 2019, courtesy of Jean-François Alcover *)
A170912
Write cos(x) = Product_{n >= 1} (1 + g_n*x^(2*n)); a(n) = numerator(g_n).
Original entry on oeis.org
-1, 1, 7, 131, 1843, 97261, 4683059, 1331727679, 568285777, 9521655609199, 175554688130609, 11334988388673161, 3457026400678609391, 6594042537777612027841, 249248595232521829462213, 268938575250382935485761673113, 3929672369519648081411955883, 4719016202742955262333630268611
Offset: 1
-1/2, 1/24, 7/360, 131/13440, 1843/453600, 97261/47900160, ...
- Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008.
- Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364.
- H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161.
- H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239.
- W. Lang, Recurrences for the general problem.
-
t1:=cos(x);
L:=100;
t0:=series(t1,x,L):
g:=[]; M:=40; t2:=t0:
for n from 1 to M do
t3:=coeff(t2,x,n); t2:=series(t2/(1+t3*x^n),x,L); g:=[op(g),t3];
od:
g;
h:=[seq(g[2*n],n=1..nops(g)/2)];
h1:=map(numer,h);
h2:=map(denom,h);
-
A[m_, n_] :=
A[m, n] =
Which[m == 1, (-1)^n/(2*n)!, m > n >= 1, 0, True,
A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1]];
a[n_] := Numerator[A[n, n]];
a /@ Range[1, 55] (* Petros Hadjicostas, Oct 04 2019, courtesy of Jean-François Alcover *)
A170913
Write cos(x) = Product_{n>=1} (1 + g_n*x^(2*n)); a(n) = denominator(g_n).
Original entry on oeis.org
2, 24, 360, 13440, 453600, 47900160, 5448643200, 2988969984000, 3126159036000, 101370917007360000, 4390627842881280000, 552984315270266880000, 393839317506450816000000, 1465809349094778175488000000, 129517997955171415349760000000, 263130836933693530167218012160000000
Offset: 1
-1/2, 1/24, 7/360, 131/13440, 1843/453600, 97261/47900160, ...
- Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008.
- Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364.
- H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161.
- H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239.
- W. Lang, Recurrences for the general problem.
-
t1:=cos(x);
L:=100;
t0:=series(t1, x, L):
g:=[]; M:=40; t2:=t0:
for n from 1 to M do
t3:=coeff(t2, x, n); t2:=series(t2/(1+t3*x^n), x, L); g:=[op(g), t3];
od:
g;
h:=[seq(g[2*n], n=1..nops(g)/2)];
h1:=map(numer, h);
h2:=map(denom, h);
-
A[m_, n_] :=
A[m, n] =
Which[m == 1, (-1)^n/(2*n)!, m > n >= 1, 0, True,
A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1]];
a[n_] := Denominator[A[n, n]];
a /@ Range[1, 55] (* Petros Hadjicostas, Oct 04 2019, courtesy of Jean-François Alcover *)
A353583
Numerators of coefficients c(n) in product expansion of 1 + tan x = Product_{k>=1} 1 + c(k)*x^k.
Original entry on oeis.org
1, 0, 1, -1, 7, -7, 199, -71, 484, -368, 187909, -610103, 2068657, -63614, 1530164189, -1715846683, 7628902283, -125125345078, 9521826231889, -17921564328719, 291162274608871, -47147385565688, 552647133893696333, -36898601487519532, 4761064630028162378
Offset: 1
1 + tan x = (1 + x)(1 + 1/3*x^3)(1 - 1/3*x^4/3)(1 + 7/15*x^5)(1 - 7/15*x^5)(...),
and this sequence lists the numerators of (1, 0, 1/3, -1/3, 7/15, -7/15, ...).
- Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008.
- Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364.
- Giedrius Alkauskas, Algebraic functions with Fermat property, eigenvalues of transfer operator and Riemann zeros, and other open problems, arXiv:1609.09842 [math.NT], 2016.
- H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161.
- H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239.
- Wolfdieter Lang, Recurrences for the general problem.
A170915
Write 1 + sin x = Product_{n>=1} (1 + g_n * x^n); a(n) = denominator(g_n).
Original entry on oeis.org
1, 1, 6, 6, 120, 120, 5040, 280, 72576, 362880, 39916800, 11975040, 1245404160, 88957440, 1307674368000, 11675664000, 71137485619200, 1067062284288000, 121645100408832000, 101370917007360000, 10218188434341888000, 5109094217170944000, 25852016738884976640000
Offset: 1
g_n = 1, 0, -1/6, 1/6, -19/120, 19/120, -659/5040, 37/280, -7675/72576, ...
- Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008.
- Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364.
- H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161.
- H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239.
- W. Lang, Recurrences for the general problem, 2009.
-
# Calculates the fractions g_n (choose L much larger than M):
PPE_sin := proc(L, M)
local t1, t0, g, t2, n, t3;
if L < 2.5*M then print("Choose larger value for L");
else
t1 := 1 + sin(x);
t0 := series(t1, x, L);
g := []; t2 := t0;
for n to M do
t3 := coeff(t2, x, n);
t2 := series(t2/(1 + t3*x^n), x, L);
g := [op(g), t3];
end do;
end if;
[seq(g[n], n = 1 .. nops(g))];
end proc;
# Calculates the denominators of g_n:
h1 := map(denom, PPE_sin(100, 40)); # Petros Hadjicostas, Oct 06 2019 by modifying N. J. A. Sloane's program from A170912 and A170913.
-
A[m_, n_] :=
A[m, n] =
Which[m == 1, (1-(-1)^n)*(-1)^Floor[(n-1)/2]/(2*n!), m > n >= 1, 0, True,
A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1]];
a[n_] := Denominator[A[n, n]];
a /@ Range[1, 55] (* Petros Hadjicostas, Oct 06 2019, courtesy of Jean-François Alcover *)
A170914
Write 1 + sin x = Product_{n>=1} (1 + g_n * x^n); a(n) = numerator(g_n).
Original entry on oeis.org
1, 0, -1, 1, -19, 19, -659, 37, -7675, 40043, -3578279, 1123009, -95259767, 7091713, -85215100151, 832857559, -4180679675171, 63804880881241, -6399968826052559, 5697831990097981, -478887035449041839, 252737248941887573, -1123931378903214542099, 35703551772944759
Offset: 1
g_n = 1, 0, -1/6, 1/6, -19/120, 19/120, -659/5040, 37/280, -7675/72576, ...
- Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008.
- Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364.
- H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161.
- H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239.
- W. Lang, Recurrences for the general problem, 2009.
-
# Calculates the fractions g_n (choose L much larger than M):
PPE_sin := proc(L, M)
local t1, t0, g, t2, n, t3;
if L < 2.5*M then print("Choose larger value for L");
else
t1 := 1 + sin(x);
t0 := series(t1, x, L);
g := []; t2 := t0;
for n to M do
t3 := coeff(t2, x, n);
t2 := series(t2/(1 + t3*x^n), x, L);
g := [op(g), t3];
end do;
end if;
[seq(g[n], n = 1 .. nops(g))];
end proc;
# Calculates the numerators of g_n:
h1 := map(numer, PPE_sin(100, 40)); # Petros Hadjicostas, Oct 06 2019 by modifying N. J. A. Sloane's program from A170912 and A170913.
-
A[m_, n_] :=
A[m, n] =
Which[m == 1, (1-(-1)^n)*(-1)^Floor[(n-1)/2]/(2*n!), m > n >= 1, 0, True,
A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1]];
a[n_] := Numerator[A[n, n]];
a /@ Range[1, 55] (* Petros Hadjicostas, Oct 06 2019, courtesy of Jean-François Alcover *)
A157164
1/product(1 - a(n)*(x^n)/n!, n=1..infinity) = 1 + sum((x^k)/k, k=1..infinity) = 1 - log(1-x).
Original entry on oeis.org
1, -1, -1, -8, -16, -74, -526, -6768, -30024, -291072, -2805408, -29134896, -374664720, -5276228736, -67692115440, -1404936248064, -16610113920768, -301439595923712, -5110200130727808, -103584959322338304
Offset: 1
Recurrence I: a(4) = 6 - 4*a(1)*a(3) - 6*a(2)^2 -12*a(1)^2*a(2) - 24*a(1)^4 = 6-4*(-1)-6-12*(-1) = -8.
Recurrence II: a(4) = -6*(1+1+ 2*(-1/2)^2) + 0!*6 - 1*(8+3) + 2*6 = -8.
Recurrence II (rewritten): a(4) = -6*(1+2*(-1/2)^2) +1 = -8.
A137852 (with different signs) for exp(x) = 1/product(1 - a(n)*(x^n)/n!, n=1..infinity).
A170919
a(n) = denominator of the coefficient c(n) of x^n in (tan x)/Product_{k=1..n-1} 1 + c(k)*x^k, n = 1, 2, 3, ...
Original entry on oeis.org
1, 1, 3, 3, 5, 45, 105, 315, 2835, 14175, 5775, 467775, 6081075, 2837835, 212837625, 70945875, 3618239625, 97692469875, 206239658625, 9280784638125, 1031198293125, 142924083427125, 322279795963125, 101111706320625, 136968913284328125, 161872352063296875
Offset: 1
1, -1, 7/3, -14/3, 54/5, -1112/45, 6574/105, -48488/315, 1143731/2835, ...
- Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008.
- Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364.
- Giedrius Alkauskas, Algebraic functions with Fermat property, eigenvalues of transfer operator and Riemann zeros, and other open problems, arXiv:1609.09842 [math.NT], 2016.
- H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161.
- H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239.
- Wolfdieter Lang, Recurrences for the general problem.
-
L := 28: g := NULL:
t := series(tan(x), x, L):
for n from 1 to L-2 do
c := coeff(t, x, n);
t := series(t/(1 + c*x^n), x, L);
g := g, c;
od: map(denom, [g]); # Based on Maple in A170918. - Peter Luschny, Oct 05 2019
Showing 1-10 of 20 results.
Comments