cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A290261 Write 1 - x/(1-x) as an inverse power product 1/(1 + a(1)*x) * 1/(1 + a(2)*x^2) * 1/(1 + a(3)*x^3) * 1/(1 + a(4)*x^4) * ...

Original entry on oeis.org

1, 2, 2, 6, 6, 10, 18, 54, 54, 114, 186, 334, 630, 1314, 2106, 5910, 7710, 15642, 27594, 57798, 97902, 207762, 364722, 712990, 1340622, 2778930, 4918482, 10437702, 18512790, 37500858, 69273666, 154021590, 258155910, 535004610, 981288906
Offset: 1

Views

Author

Gus Wiseman, Jul 24 2017

Keywords

Comments

The initial terms are given on page 1234 of Gingold, Knopfmacher, 1995.
From Petros Hadjicostas, Oct 04 2019: (Start)
In Section 3 of Gingold and Knopfmacher (1995), it is proved that, if f(z) = Product_{n >= 1} (1 + g(n))*z^n = 1/(Product_{n >= 1} (1 - h(n))*z^n), then g(2*n - 1) = h(2*n - 1) and Sum_{d|n} (1/d)*h(n/d)^d = -Sum_{d|n} (1/d)*(-g(n/d))^d. The same results were proved more than ten years later by Alkauskas (2008, 2009). [If we let a(n) = -g(n), then Alkauskas works with f(z) = Product_{n >= 1} (1 - a(n))*z^n; i.e., a(2*n - 1) = -h(2*n - 1) etc.]
The PPE of 1 - x/(1-x) is given in A220418, which is also studied in Gingold and Knopfmacher (1995) starting at p. 1223.
(End)

Crossrefs

Programs

  • Mathematica
    nn=20;Solve[Table[Expand[SeriesCoefficient[Product[1/(1+a[k]x^k),{k,n}],{x,0,n}]]==-1,{n,nn}],Table[a[n],{n,nn}]][[1,All,2]]
    (* Second program: *)
    A[m_, n_] := A[m, n] = Which[m == 1, 2^(n-1), m > n >= 1, 0, True, A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1] ];
    a[n_] := A[n, n];
    a /@ Range[1, 55] (* Petros Hadjicostas, Oct 04 2019, courtesy of Jean-François Alcover *)

Formula

a(n) = Sum_t (-1)^v(t) where the sum is over all enriched p-trees of weight n (see A289501 for definition) and v(t) is the number of nodes (branchings and leaves) in t.
From Petros Hadjicostas, Oct 04 2019: (Start)
a(n) satisfies Sum_{d|n} (1/d)*(-a(n/d))^d = -(2^n - 1)/n. Thus, a(n) = Sum_{d|n, d>1} (1/d)*(-a(n/d))^d + (2^n - 1)/n.
a(2*n - 1) = A220418(2*n - 1) for n >= 1 because A220418 gives the PPE of 1 - x/(1-x).
Define (A(m,n): n,m >= 1) by A(m=1,n) = 2^(n-1) for n >= 1, A(m,n) = 0 for m > n >= 1 (upper triangular), and A(m,n) = A(m-1,n) - A(m-1,m-1) * A(m,n-m+1) for n >= m >= 2. Then a(n) = A(n,n). [Theorem 3 in Gingold et al. (1988).]
(End)

A220418 Express 1 - x - x^2 - x^3 - x^4 - ... as product (1 + g(1)*x) * (1 + g(2)*x^2) *(1 + g(3)*x^3) * ... and use a(n) = - g(n).

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 18, 27, 54, 84, 186, 296, 630, 1008, 2106, 3711, 7710, 12924, 27594, 48528, 97902, 173352, 364722, 647504, 1340622, 2382660, 4918482, 9052392, 18512790, 33361776, 69273666, 127198287, 258155910, 475568220, 981288906, 1814542704, 3714566310
Offset: 1

Views

Author

Michel Marcus, Dec 14 2012

Keywords

Comments

This is the PPE (power product expansion) of A153881 (with offset 0).
When p is prime, a(p) = (2^p-2)/p (A064535).
From Petros Hadjicostas, Oct 04 2019: (Start)
This sequence appears as an example in Gingold and Knopfmacher (1995) starting at p. 1223.
In Section 3 of Gingold and Knopfmacher (1995), it is proved that, if f(z) = Product_{n >= 1} (1 + g(n))*z^n = 1/(Product_{n >= 1} (1 - h(n))*z^n), then g(2*n - 1) = h(2*n - 1) and Sum_{d|n} (1/d)*h(n/d)^d = -Sum_{d|n} (1/d)*(-g(n/d))^d. The same results were proved more than ten years later by Alkauskas (2008, 2009). [If we let a(n) = -g(n), then Alkauskas works with f(z) = Product_{n >= 1} (1 - a(n))*z^n; i.e., a(2*n - 1) = -h(2*n - 1) etc.]
The PPE of 1/(1 - x - x^2 - x^3 - x^4 - ...) is given in A290261, which is also studied in Gingold and Knopfmacher (1995, p. 1234).
(End)
The number of terms in the Zassenhaus formula exponent of order n, as computed by the algorithm by Casas, Murua & Nadinic, is equal to a(n) at least for n = 2..24. - Andrey Zabolotskiy, Apr 09 2023

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i<1, 1,
          b(n, i-1)+a(i)*b(n-i, min(n-i, i)))
        end:
    a:= proc(n) option remember; 2^n-b(n, n-1) end:
    seq(a(n), n=1..40);  # Alois P. Heinz, Jun 22 2018
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0 || i < 1, 1, b[n, i - 1] + a[i]*b[n - i, Min[n - i, i]]];
    a[n_] := a[n] = 2^n - b[n, n - 1] ;
    Array[a, 40] (* Jean-François Alcover, Jul 09 2018, after Alois P. Heinz *)
  • PARI
    a(m) = {default(seriesprecision, m+1); gk = vector(m); pol = 1 + sum(n=1, m, -x^n); gk[1] = polcoeff( pol, 1); for (k=2, m, pol = taylor(pol/(1+gk[k-1]*x^(k-1)), x); gk[k] = polcoeff(pol, k, x);); for (k=1, m, print1(-gk[k], ", "););}

Formula

g(1) = -1 and for k > 1, g(k) satisfies Sum_{d|k} (1/d)*(-g(k/d))^d = (2^k - 1)/k, where a(k) = -g(k). - Gevorg Hmayakyan, Jun 05 2016 [Corrected by Petros Hadjicostas, Oct 04 2019. See p. 1224 in Gingold and Knopfmacher (1995).]
From Petros Hadjicostas, Oct 04 2019: (Start)
a(2*n - 1) = A290261(2*n - 1) for n >= 1 because A290261 gives the PPE of 1/(1 - x - x^2 - x^3 - ...) = (1 - x)/(1 - 2*x).
Define (A(m,n): n,m >= 1) by A(m=1,n) = -1 for n >= 1, A(m,n) = 0 for m > n >= 1 (upper triangular), and A(m,n) = A(m-1,n) - A(m-1,m-1) * A(m,n-m+1) for n >= m >= 2. Then a(n) = A(n,n). [Theorem 3 in Gingold et al. (1988).]
(End)

Extensions

Name edited by Petros Hadjicostas, Oct 04 2019

A301364 Regular triangle where T(n,k) is the number of enriched p-trees of weight n with k leaves.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 4, 5, 1, 2, 6, 11, 12, 1, 3, 10, 26, 38, 34, 1, 3, 13, 39, 87, 117, 92, 1, 4, 19, 69, 181, 339, 406, 277, 1, 4, 23, 95, 303, 707, 1198, 1311, 806, 1, 5, 30, 143, 514, 1430, 2970, 4525, 4522, 2500, 1, 5, 35, 184, 762, 2446, 6124, 11627
Offset: 1

Views

Author

Gus Wiseman, Mar 19 2018

Keywords

Comments

An enriched p-tree of weight n > 0 is either a single node of weight n, or a finite sequence of two or more enriched p-trees with weakly decreasing weights summing to n.

Examples

			Triangle begins:
  1
  1   1
  1   1   2
  1   2   4   5
  1   2   6  11  12
  1   3  10  26  38  34
  1   3  13  39  87 117  92
  1   4  19  69 181 339 406 277
  ...
The T(5,4) = 11 enriched p-trees: (((21)1)1), ((2(11))1), (((11)2)1), ((211)1), ((21)(11)), (((11)1)2), ((111)2), ((21)11), (2(11)1), ((11)21), (2111).
		

Crossrefs

Programs

  • Mathematica
    eptrees[n_]:=Prepend[Join@@Table[Tuples[eptrees/@ptn],{ptn,Select[IntegerPartitions[n],Length[#]>1&]}],n];
    Table[Length[Select[eptrees[n],Count[#,_Integer,{-1}]===k&]],{n,8},{k,n}]
  • PARI
    A(n)={my(v=vector(n)); for(n=1, n, v[n] = y + polcoef(1/prod(k=1, n-1, 1 - v[k]*x^k + O(x*x^n)), n)); apply(p->Vecrev(p/y), v)}
    { my(T=A(10)); for(n=1, #T, print(T[n])) } \\ Andrew Howroyd, Aug 26 2018

A300866 Signed recurrence over binary strict trees: a(n) = 1 - Sum_{x + y = n, 0 < x < y < n} a(x) * a(y).

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, -1, 1, 1, -2, 3, -1, -3, 8, -8, 1, 14, -26, 22, 10, -59, 90, -52, -74, 238, -291, 80, 417, -930, 915, 124, -1991, 3483, -2533, -2148, 9011, -12596, 5754, 14350, -37975, 42735, -4046, -77924, 154374, -133903, -56529, 376844, -591197, 355941, 522978, -1706239
Offset: 0

Views

Author

Gus Wiseman, Mar 13 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=1-Sum[a[k]*a[n-k],{k,1,(n-1)/2}];
    Array[a,40]
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 - sum(k=1, (n-1)\2, v[k]*v[n-k])); concat([1], v)} \\ Andrew Howroyd, Aug 27 2018

A290262 Irregular triangle read by rows: rows give the (negated) nonzero coefficients of t in each term of the inverse power product expansion of 1 - t * x/(1-x).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 3, 4, 2, 1, 3, 5, 5, 3, 1, 1, 4, 9, 13, 13, 9, 4, 1, 1, 4, 9, 13, 13, 9, 4, 1, 1, 5, 14, 25, 30, 24, 12, 3, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 6, 21, 48, 75, 81, 60, 30, 10, 2
Offset: 1

Views

Author

Gus Wiseman, Jul 24 2017

Keywords

Comments

Row sums are A290261(n). A regular version is A290320.

Examples

			Triangle begins:
  1;
  1,  1;
  1,  1,
  1,  2,  2,  1;
  1,  2,  2,  1;
  1,  3,  4,  2;
  1,  3,  5,  5,  3,  1;
  1,  4,  9, 13, 13,  9,  4,  1;
  1,  4,  9, 13, 13,  9,  4,  1;
  1,  5, 14, 25, 30, 24, 12,  3;
  1,  5, 15, 30, 42, 42, 30, 15,  5,  1;
  1,  6, 21, 48, 75, 81, 60, 30, 10,  2;
		

Crossrefs

Programs

  • Mathematica
    eptrees[n_]:=Prepend[Join@@Table[Tuples[eptrees/@y],{y,Rest[IntegerPartitions[n]]}],n];
    eptrans[a_][n_]:=Sum[(-1)^Count[tree,_List,{0,Infinity}]*Product[a[i],{i,Flatten[{tree}]}],{tree,eptrees[n]}];
    Table[DeleteCases[CoefficientList[-eptrans[-t&][n],t],0],{n,12}]

A300863 Signed recurrence over enriched p-trees: a(n) = (-1)^(n - 1) + Sum_{y1 + ... + yk = n, y1 >= ... >= yk > 0, k > 1} a(y1) * ... * a(yk).

Original entry on oeis.org

1, 0, 2, 2, 6, 14, 34, 82, 214, 566, 1482, 4058, 10950, 30406, 83786, 235714, 658286, 1874254, 5293674, 15189810, 43312542, 125075238, 359185586, 1043712922, 3015569582, 8800146182, 25565402802, 74918274562, 218572345718, 642783954238, 1882606578002
Offset: 1

Views

Author

Gus Wiseman, Mar 13 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=(-1)^(n-1)+Sum[Times@@a/@y,{y,Select[IntegerPartitions[n],Length[#]>1&]}];
    Array[a,40]

Formula

O.g.f.: (-1/(1+x) + Product 1/(1-a(n)x^n))/2.

A295632 Write 1/Product_{n > 1}(1 - 1/n^s) in the form Product_{n > 1}(1 + a(n)/n^s).

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1
Offset: 2

Views

Author

Gus Wiseman, Nov 24 2017

Keywords

Comments

First negative entry is a(1024) = -4.

Crossrefs

Programs

  • Mathematica
    nn=100;
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Solve[Table[Length[facs[n]]==Sum[Times@@a/@f,{f,Select[facs[n],UnsameQ@@#&]}],{n,2,nn}],Table[a[n],{n,2,nn}]][[1,All,2]]

A300864 Signed recurrence over strict trees: a(n) = -1 + Sum_{y1 + ... + yk = n, y1 > ... > yk > 0, k > 1} a(y1) * ... * a(yk).

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 2, -1, 0, 4, -6, 6, 6, -24, 38, -17, -64, 188, -230, -6, 662, -1432, 1286, 1210, -6362, 10692, -5530, -18274, 57022, -74364, 174, 216703, -489544, 467860, 391258, -2256430, 3948206, -2234064, -6725362, 21920402, -29716570, 2095564, 84595798, -198418242, 197499846
Offset: 1

Views

Author

Gus Wiseman, Mar 13 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=-1+Sum[Times@@a/@y,{y,Select[IntegerPartitions[n],Length[#]>1&&UnsameQ@@#&]}];
    -Array[a,40]

A300865 Signed recurrence over binary enriched p-trees: a(n) = (-1)^(n-1) + Sum_{x + y = n, 0 < x <= y < n} a(x) * a(y).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 2, 2, 4, 6, 10, 16, 27, 46, 77, 131, 224, 391, 672, 1180, 2050, 3626, 6344, 11276, 19863, 35479, 62828, 112685, 200462, 360627, 644199, 1162296, 2083572, 3768866, 6777314, 12289160, 22158106, 40255496, 72765144, 132453122, 239936528, 437445448
Offset: 1

Views

Author

Gus Wiseman, Mar 13 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=(-1)^(n-1)+Sum[a[k]*a[n-k],{k,1,n/2}];
    Array[a,50]

A301470 Signed recurrence over enriched r-trees: a(n) = (-1)^n + Sum_y Product_{i in y} a(y) where the sum is over all integer partitions of n - 1.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 2, 3, 5, 9, 15, 27, 47, 87, 155, 288, 524, 983, 1813, 3434, 6396, 12174, 22891, 43810, 82925, 159432, 303559, 585966, 1121446, 2171341, 4172932, 8106485, 15635332, 30445899, 58925280, 115014681, 223210718, 436603718, 849480835, 1664740873
Offset: 0

Views

Author

Gus Wiseman, Mar 21 2018

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
         `if`(i<1, 0, b(n, i-1)+a(i)*b(n-i, min(n-i, i))))
        end:
    a:= n-> `if`(n<2, 1-n, b(n-2$2)+b(n-1, n-2)):
    seq(a(n), n=0..45);  # Alois P. Heinz, Jun 23 2018
  • Mathematica
    a[n_]:=a[n]=(-1)^n+Sum[Times@@a/@y,{y,IntegerPartitions[n-1]}];
    Array[a,30]
    (* Second program: *)
    b[n_, i_] := b[n, i] = If[n == 0, 1,
         If[i < 1, 0, b[n, i - 1] + a[i] b[n - i, Min[n - i, i]]]];
    a[n_] := If[n < 2, 1 - n, b[n - 2, n - 2] + b[n - 1, n - 2]];
    a /@ Range[0, 45] (* Jean-François Alcover, May 20 2021, after Alois P. Heinz *)

Formula

O.g.f.: 1/(1 + x) + x Product_{i > 0} 1/(1 - a(i) x^i).
a(n) = Sum_t (-1)^w(t) where the sum is over all enriched r-trees of size n and w(t) is the sum of leaves of t.
Showing 1-10 of 15 results. Next