cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A290261 Write 1 - x/(1-x) as an inverse power product 1/(1 + a(1)*x) * 1/(1 + a(2)*x^2) * 1/(1 + a(3)*x^3) * 1/(1 + a(4)*x^4) * ...

Original entry on oeis.org

1, 2, 2, 6, 6, 10, 18, 54, 54, 114, 186, 334, 630, 1314, 2106, 5910, 7710, 15642, 27594, 57798, 97902, 207762, 364722, 712990, 1340622, 2778930, 4918482, 10437702, 18512790, 37500858, 69273666, 154021590, 258155910, 535004610, 981288906
Offset: 1

Views

Author

Gus Wiseman, Jul 24 2017

Keywords

Comments

The initial terms are given on page 1234 of Gingold, Knopfmacher, 1995.
From Petros Hadjicostas, Oct 04 2019: (Start)
In Section 3 of Gingold and Knopfmacher (1995), it is proved that, if f(z) = Product_{n >= 1} (1 + g(n))*z^n = 1/(Product_{n >= 1} (1 - h(n))*z^n), then g(2*n - 1) = h(2*n - 1) and Sum_{d|n} (1/d)*h(n/d)^d = -Sum_{d|n} (1/d)*(-g(n/d))^d. The same results were proved more than ten years later by Alkauskas (2008, 2009). [If we let a(n) = -g(n), then Alkauskas works with f(z) = Product_{n >= 1} (1 - a(n))*z^n; i.e., a(2*n - 1) = -h(2*n - 1) etc.]
The PPE of 1 - x/(1-x) is given in A220418, which is also studied in Gingold and Knopfmacher (1995) starting at p. 1223.
(End)

Crossrefs

Programs

  • Mathematica
    nn=20;Solve[Table[Expand[SeriesCoefficient[Product[1/(1+a[k]x^k),{k,n}],{x,0,n}]]==-1,{n,nn}],Table[a[n],{n,nn}]][[1,All,2]]
    (* Second program: *)
    A[m_, n_] := A[m, n] = Which[m == 1, 2^(n-1), m > n >= 1, 0, True, A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1] ];
    a[n_] := A[n, n];
    a /@ Range[1, 55] (* Petros Hadjicostas, Oct 04 2019, courtesy of Jean-François Alcover *)

Formula

a(n) = Sum_t (-1)^v(t) where the sum is over all enriched p-trees of weight n (see A289501 for definition) and v(t) is the number of nodes (branchings and leaves) in t.
From Petros Hadjicostas, Oct 04 2019: (Start)
a(n) satisfies Sum_{d|n} (1/d)*(-a(n/d))^d = -(2^n - 1)/n. Thus, a(n) = Sum_{d|n, d>1} (1/d)*(-a(n/d))^d + (2^n - 1)/n.
a(2*n - 1) = A220418(2*n - 1) for n >= 1 because A220418 gives the PPE of 1 - x/(1-x).
Define (A(m,n): n,m >= 1) by A(m=1,n) = 2^(n-1) for n >= 1, A(m,n) = 0 for m > n >= 1 (upper triangular), and A(m,n) = A(m-1,n) - A(m-1,m-1) * A(m,n-m+1) for n >= m >= 2. Then a(n) = A(n,n). [Theorem 3 in Gingold et al. (1988).]
(End)

A273866 Coefficients a(k,m) of polynomials a{k}(h) appearing in the product Product_{k >= 1} (1 - a{k}(h)*x^k) = 1 - h*x/(1-x).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 3, 5, 5, 3, 1, 1, 3, 6, 7, 6, 3, 1, 1, 4, 9, 13, 13, 9, 4, 1, 1, 4, 10, 17, 20, 17, 10, 4, 1, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 5, 16, 36, 57, 66, 57, 36, 16, 5, 1
Offset: 1

Views

Author

Gevorg Hmayakyan, Jun 01 2016

Keywords

Comments

The a(k,m) form a table where each row has k-1 elements starting from 2 and the a(1,1) = 1.

Examples

			a{1}(h) = h,
a{2}(h) = h,
a{3}(h) = h^2 + h,
a{4}(h) = h^3 + h^2 + h,
a{5}(h) = h^4 + 2*h^3 + 2*h^2 + h,
a{6}(h) = h^5 + 2*h^4 + 2*h^3 + 2*h^2 + h,
a{7}(h) = h^6 + 3*h^5 + 5*h^4 + 5*h^3 + 3*h^2 + h,
a{8}(h) = h^7 + 3*h^6 + 6*h^5 + 7*h^4 + 6*h^3 + 3*h^2 + h,
a{9}(h) = h^8 + 4*h^7 + 9*h^6 + 13*h^5 + 13*h^4 + 9*h^3 + 4*h^2 + h
...
and the corresponding a(k,m) table is:
  1,
  1,
  1,  1,
  1,  1,  1,
  1,  2,  2,  1,
  1,  2,  2,  2,  1,
  1,  3,  5,  5,  3,  1,
  1,  3,  6,  7,  6,  3,  1,
  1,  4,  9, 13, 13,  9,  4,  1,
  ...
a(7,3) = 5 because there are six strict trees contributing positive one {{5,1},1}, {{4,2},1}, {{4,1},2}, {{3,2},2}, {4,{2,1}}, {{3,1},3} and there is one strict tree contributing negative one {4,2,1}. - _Gus Wiseman_, Nov 14 2016
		

Crossrefs

Programs

  • Maple
    with(ListTools), with(numtheory), with(combinat);
    L := product(1-a[k]*x^k, k = 1 .. 600);
    S := Flatten([seq(-h, i = 1 .. 100)]);
    Sabs := Flatten([seq(i, i = 1 .. 100)]);
    seq(assign(a[i] = solve(coeff(L, x^i) = `if`(is(i in Sabs), S[Search(i, Sabs)], 0), a[i])), i = 1 .. 20);
    map(coeffs, [seq(simplify(a[i]), i = 1 .. 20)]);
  • Mathematica
    strictrees[n_Integer?Positive]:=Prepend[Join@@Function[ptn,Tuples[strictrees/@ptn]]/@Select[IntegerPartitions[n],And[Length[#]>1,UnsameQ@@#]&],n];
    Table[Sum[(-1)^(Count[tree,,{0,Infinity}]-1),{tree,Select[strictrees[n],Length[Flatten[{#}]]===m&]}],{n,1,9},{m,1,n-1/.(0->1)}] (* _Gus Wiseman, Nov 14 2016 *)
    (* second program *)
    A[m_, n_] :=
      A[m, n] =
       Which[m == 1, -h, m > n >= 1, 0, True,
        A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1]];
    a[n_] := Expand[-A[n, n]];
    a /@ Range[1, 25] (* Petros Hadjicostas, Oct 04 2019, courtesy of Jean-François Alcover *)

Formula

a(k,m) = a(k, k-m).
For prime p: Sum_{m = 1..p-1} a(p, m) = (2^p - 2)/p.
a{k}(h) satisfies Sum_{d|k} (1/d)*(a{k/d}(h))^d = ((h+1)^k - 1)/k. [Corrected by Petros Hadjicostas, Oct 04 2019]
For prime p: a{p}(h) = ((h+1)^p - h^p - 1)/p.
See A273873 for the definition of strict tree. Then a(n,m) = Sum_t (-1)^{v(t)-1} where the sum is over all strict trees of weight n with m leaves, and v(t) is the number of nodes in t (including the leaves, which are positive integers). See example 2 and the first Mathematica program. - Gus Wiseman, Nov 14 2016

A295632 Write 1/Product_{n > 1}(1 - 1/n^s) in the form Product_{n > 1}(1 + a(n)/n^s).

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1
Offset: 2

Views

Author

Gus Wiseman, Nov 24 2017

Keywords

Comments

First negative entry is a(1024) = -4.

Crossrefs

Programs

  • Mathematica
    nn=100;
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Solve[Table[Length[facs[n]]==Sum[Times@@a/@f,{f,Select[facs[n],UnsameQ@@#&]}],{n,2,nn}],Table[a[n],{n,2,nn}]][[1,All,2]]

A295635 Write 2 - Zeta(s) in the form 1/Product_{n > 1}(1 + a(n)/n^s).

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 2, 6, 1, 4, 1, 4, 2, 2, 1, 8, 2, 2, 2, 4, 1, 6, 1, 6, 2, 2, 2, 12, 1, 2, 2, 8, 1, 6, 1, 4, 4, 2, 1, 16, 2, 4, 2, 4, 1, 8, 2, 8, 2, 2, 1, 16, 1, 2, 4, 10, 2, 6, 1, 4, 2, 6, 1, 24, 1, 2, 4, 4, 2, 6, 1, 16, 6, 2, 1, 16, 2, 2
Offset: 2

Views

Author

Gus Wiseman, Nov 24 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nn=100;
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    -Solve[Table[-1==Sum[Times@@a/@f,{f,facs[n]}],{n,2,nn}],Table[a[n],{n,2,nn}]][[1,All,2]]

A295636 Write 2 - Zeta(s) in the form Product_{n > 1}(1 - a(n)/n^s).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 8, 1, 2, 2, 4, 1, 6, 1, 6, 2, 2, 2, 8, 1, 2, 2, 8, 1, 6, 1, 4, 4, 2, 1, 16, 1, 4, 2, 4, 1, 8, 2, 8, 2, 2, 1, 16, 1, 2, 4, 8, 2, 6, 1, 4, 2, 6, 1, 24, 1, 2, 4, 4, 2, 6, 1, 16, 3, 2, 1, 16, 2, 2, 2
Offset: 2

Views

Author

Gus Wiseman, Nov 24 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nn=100;
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    -Solve[Table[-1==Sum[Times@@a/@f,{f,Select[facs[n],UnsameQ@@#&]}],{n,2,nn}],Table[a[n],{n,2,nn}]][[1,All,2]]

Formula

a(n) = Sum_t (-1)^(v(t)-1) where the sum is over all strict tree-factorizations of n (see A295279 for definition) and v(t) is the number of nodes (branchings and leaves) in t.

A290320 Write 1 - t * x/(1-x) as an inverse power product 1/(1+c(1)x) * 1/(1+c(2)x^2) * 1/(1+c(3)x^3) * ... The sequence is a regular triangle where T(n,k) is the coefficient of t^k in c(n), 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 2, 2, 1, 1, 2, 2, 1, 0, 1, 3, 4, 2, 0, 0, 1, 3, 5, 5, 3, 1, 0, 1, 4, 9, 13, 13, 9, 4, 1, 1, 4, 9, 13, 13, 9, 4, 1, 0, 1, 5, 14, 25, 30, 24, 12, 3, 0, 0, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 0, 1, 6, 21, 48, 75, 81, 60, 30, 10, 2, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jul 27 2017

Keywords

Comments

An irregular triangle with only the nonzero coefficients is given by A290262.

Examples

			Triangle begins:
  1;
  1,  1;
  1,  1,  0;
  1,  2,  2,  1;
  1,  2,  2,  1,  0;
  1,  3,  4,  2,  0,  0;
  1,  3,  5,  5,  3,  1,  0;
  1,  4,  9, 13, 13,  9,  4,  1;
  1,  4,  9, 13, 13,  9,  4,  1,  0;
  1,  5, 14, 25, 30, 24, 12,  3,  0,  0;
  1,  5, 15, 30, 42, 42, 30, 15,  5,  1,  0;
  1,  6, 21, 48, 75, 81, 60, 30, 10,  2,  0,  0;
		

Crossrefs

Programs

  • Mathematica
    nn=12;Solve[Table[Expand[SeriesCoefficient[Product[1/(1+c[k]x^k),{k,n}],{x,0,n}]]==-t,{n,nn}],Table[c[n],{n,nn}]][[1,All,2]]
Showing 1-6 of 6 results.