A353584
Denominators of coefficients c(n) in product expansion of 1 + tan x = Product_{k>=1} 1 + c(k)*x^k.
Original entry on oeis.org
1, 1, 3, 3, 15, 15, 315, 105, 567, 405, 155925, 467775, 1216215, 34749, 638512875, 638512875, 2170943775, 32564156625, 1856156927625, 3093594879375, 38979295480125, 5568470782875, 49308808782358125, 2900518163668125, 284473896821296875, 1232720219558953125
Offset: 1
1 + tan x = (1 + x)(1 + 1/3*x^3)(1 - 1/3*x^4/3)(1 + 7/15*x^5)(1 - 7/15*x^5)(...),
and this sequence lists the denominators of (1, 0, 1/3, -1/3, 7/15, -7/15, ...).
A353611
Product_{n>=1} (1 + a(n)*x^n/n!) = 1 + tan(x).
Original entry on oeis.org
1, 0, 2, -8, 56, -336, 3184, -27264, 309760, -3297280, 48104704, -624745472, 10591523840, -159594803200, 3133776259072, -56224864108544, 1249919350046720, -24600643845095424, 624022403933077504, -14094091678163140608, 381632216575339397120, -9516741266133420605440
Offset: 1
-
nn = 22; f[x_] := Product[(1 + a[n] x^n/n!), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - 1 - Tan[x], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten
A353586
Numerators of coefficients c(n) in product expansion of (tan x)/x = Product_{k>=1} 1 + c(k)*x^(2k).
Original entry on oeis.org
1, 2, 1, 53, 91, 811, 73267, 35540711, 49830764, 34241488, 35249288479, 19259769465311, 732125336837021, 619038578481164306, 30015706187367326893, 16177789439326291541, 46789354983174555461, 498213391899375541476686, 248130101882943187003954597, 2572596069535443792125179632949
Offset: 1
(tan x)/x = (1 + 1/3*x^2)(1 + 2/15*x^4)(1 + 1/105*x^6)(1 + 53/2835*x^8)...
and this sequence lists the numerators of (1/3, 2/15, 1/105, 53/2835, ...).
A353587
Denominators of coefficients c(n) in product expansion of (tan x)/x = Product_{k>=1} 1 + c(k)*x^(2k).
Original entry on oeis.org
3, 15, 105, 2835, 66825, 3648645, 383107725, 97692469875, 1856156927625, 5568470782875, 9056719980433125, 33283445928091734375, 1298054391195577640625, 3952575621190533915703125, 367589532770719654160390625, 112527407991036628824609375, 3842566358093920359949921875
Offset: 1
(tan x)/x = (1 + 1/3*x^2)(1 + 2/15*x^4)(1 + 1/105*x^6)(1 + 53/2835*x^8)...
and this sequence lists the denominators of (1/3, 2/15, 1/105, 53/2835, ...).
A354065
Product_{n>=1} 1 / (1 - x^n)^(a(n)/n!) = 1 + tan(x).
Original entry on oeis.org
1, -2, 2, -8, 56, -496, 3184, -22784, 273920, -4539136, 48104704, -506000384, 10591523840, -204528633856, 2888557717504, -53417657237504, 1249919350046720, -28453501844586496, 624022403933077504, -13729309300086800384, 372737701735949926400, -11010228423219933085696
Offset: 1
Cf.
A000182,
A003707,
A009006,
A353583,
A353584,
A353611,
A353911,
A354055,
A354056,
A354063,
A354064,
A354066.
-
nmax = 22; CoefficientList[Series[Sum[MoebiusMu[k] Log[1 + Tan[x^k]]/k, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
A170919
a(n) = denominator of the coefficient c(n) of x^n in (tan x)/Product_{k=1..n-1} 1 + c(k)*x^k, n = 1, 2, 3, ...
Original entry on oeis.org
1, 1, 3, 3, 5, 45, 105, 315, 2835, 14175, 5775, 467775, 6081075, 2837835, 212837625, 70945875, 3618239625, 97692469875, 206239658625, 9280784638125, 1031198293125, 142924083427125, 322279795963125, 101111706320625, 136968913284328125, 161872352063296875
Offset: 1
1, -1, 7/3, -14/3, 54/5, -1112/45, 6574/105, -48488/315, 1143731/2835, ...
- Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008.
- Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364.
- Giedrius Alkauskas, Algebraic functions with Fermat property, eigenvalues of transfer operator and Riemann zeros, and other open problems, arXiv:1609.09842 [math.NT], 2016.
- H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161.
- H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239.
- Wolfdieter Lang, Recurrences for the general problem.
-
L := 28: g := NULL:
t := series(tan(x), x, L):
for n from 1 to L-2 do
c := coeff(t, x, n);
t := series(t/(1 + c*x^n), x, L);
g := g, c;
od: map(denom, [g]); # Based on Maple in A170918. - Peter Luschny, Oct 05 2019
A353911
Product_{n>=1} 1 / (1 - a(n)*x^n/n!) = 1 + tan(x).
Original entry on oeis.org
1, -2, 2, -32, 56, -416, 3184, -85504, 309760, -4087552, 48104704, -546922496, 10591523840, -194387924992, 3133776259072, -129880886411264, 1249919350046720, -29073986250604544, 624022403933077504, -15137719350365519872, 381632216575339397120, -11149155036737662615552
Offset: 1
-
nn = 22; f[x_] := Product[1/(1 - a[n] x^n/n!), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - 1 - Tan[x], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten
A354175
Product_{n>=1} (1 + x^n)^(a(n)/n!) = 1 + tan(x).
Original entry on oeis.org
1, 0, 2, -8, 56, -256, 3184, -36224, 273920, -2845696, 48104704, -676312064, 10591523840, -149454094336, 2888557717504, -72214957359104, 1249919350046720, -23620669488234496, 624022403933077504, -15637185047733469184, 372737701735949926400, -9655667879651150135296
Offset: 1
Cf.
A000182,
A009006,
A067856,
A353583,
A353584,
A353611,
A353911,
A354065,
A354171,
A354172,
A354173,
A354174,
A354176.
-
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[c[i], j] b[n - i j, i - 1], {j, 0, n/i}]]]; c[n_] := c[n] = 2^(n + 1) (2^(n + 1) - 1) Abs[BernoulliB[n + 1]]/((n + 1) n!) - b[n, n - 1]; a[n_] := n! c[n]; Table[a[n], {n, 1, 22}]
A170918
a(n) = numerator of the coefficient c(n) of x^n in (tan x)/Product_{0 < k < n} 1 + c(k)*x^k, n = 1, 2, 3, ...
Original entry on oeis.org
1, -1, 7, -14, 54, -1112, 6574, -48488, 1143731, -14813072, 16252211, -3500388967, 125127865048, -158589803803, 33133618166566, -30512906279732, 4378989933312913, -330336346477870319, 1981395373839282068, -251479418962683770473, 79893293800974935213, -31493610597939643431532
Offset: 1
1, -1, 7/3, -14/3, 54/5, -1112/45, 6574/105, -48488/315, 1143731/2835, ...
- Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008.
- Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364.
- Giedrius Alkauskas, Algebraic functions with Fermat property, eigenvalues of transfer operator and Riemann zeros, and other open problems, arXiv:1609.09842 [math.NT], 2016.
- H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161.
- H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239.
- Wolfdieter Lang, Recurrences for the general problem.
-
t1:=tan(x);
L:=100;
t0:=series(t1,x,L):
g:=[]; M:=40; t2:=t0:
for n from 1 to M do
t3:=coeff(t2,x,n); t2:=series(t2/(1+t3*x^n),x,L); g:=[op(g),t3];
od:
g;
g1:=map(numer,g);
g2:=map(denom,g);
-
t=tan(x+O(x)^25); vector(#t,n,c=polcoef(t,n);t/=1+c*x^n;numerator(c)) \\ M. F. Hasler, May 07 2022
A170923
a(n) = denominator of the coefficient c(n) of x^n in sqrt(1+x)/Product_{k=1..n-1} 1 + c(k)*x^k, n = 1, 2, 3, ...
Original entry on oeis.org
2, 8, 8, 128, 32, 512, 128, 32768, 128, 32768, 2048, 2097152, 8192, 2097152, 32768, 2147483648, 131072, 16777216, 524288, 34359738368, 2097152, 8589934592, 8388608, 35184372088832, 524288, 549755813888, 33554432, 562949953421312, 536870912, 35184372088832
Offset: 1
- Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008.
- Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364.
- Giedrius Alkauskas, Algebraic functions with Fermat property, eigenvalues of transfer operator and Riemann zeros, and other open problems, arXiv:1609.09842 [math.NT], 2016.
- H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161.
- H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239.
- Wolfdieter Lang, Recurrences for the general problem.
-
L := 32: g := NULL:
t := series(sqrt(1+x), x, L):
for n from 1 to L-2 do
c := coeff(t, x, n);
t := series(t/(1 + c*x^n), x, L);
g := g, c;
od: map(denom, [g]); # Peter Luschny, May 12 2022
Showing 1-10 of 12 results.
Comments