cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A353607 Product_{n>=1} (1 + a(n)*x^n/n!) = 1 + sin(x).

Original entry on oeis.org

1, 0, -1, 4, -19, 114, -659, 5328, -38375, 400430, -3578279, 44920360, -476298835, 6949878740, -85215100151, 1492480745728, -20903398375855, 382829285287446, -6399968826052559, 136747967762351544, -2394435177245209195, 55602194767215266060, -1123931378903214542099
Offset: 1

Views

Author

Ilya Gutkovskiy, May 07 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 23; f[x_] := Product[(1 + a[n] x^n/n!), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - 1 - Sin[x], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten

A353608 Product_{n>=1} (1 + a(n)*x^n/n!) = 1 + sinh(x).

Original entry on oeis.org

1, 0, 1, -4, 21, -126, 1023, -8240, 84745, -864370, 10925883, -133566808, 1994183205, -28455880012, 489891177051, -8112780640000, 158096182329585, -2911196026492074, 64115697136312563, -1328879415116924744, 31920276313015362525, -728711636884140292372
Offset: 1

Views

Author

Ilya Gutkovskiy, May 07 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 22; f[x_] := Product[(1 + a[n] x^n/n!), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - 1 - Sinh[x], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten

A353609 Product_{n>=1} (1 + a(n)*x^(2*n)/(2*n)!) = cosh(x).

Original entry on oeis.org

1, 1, -14, 393, -14744, 972610, -74928944, 9322093753, -1163849271296, 228519734620776, -44942000161435904, 12717856972091286642, -3539995034294896016384, 1371560847857743301790928, -510461123036204706738612224, 268938575250382935485761673113
Offset: 1

Views

Author

Ilya Gutkovskiy, May 07 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 16; f[x_] := Product[(1 + a[n] x^(2 n)/(2 n)!), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - Cosh[x], {x, 0, 2 nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten

A354065 Product_{n>=1} 1 / (1 - x^n)^(a(n)/n!) = 1 + tan(x).

Original entry on oeis.org

1, -2, 2, -8, 56, -496, 3184, -22784, 273920, -4539136, 48104704, -506000384, 10591523840, -204528633856, 2888557717504, -53417657237504, 1249919350046720, -28453501844586496, 624022403933077504, -13729309300086800384, 372737701735949926400, -11010228423219933085696
Offset: 1

Views

Author

Ilya Gutkovskiy, May 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[Sum[MoebiusMu[k] Log[1 + Tan[x^k]]/k, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest

Formula

E.g.f.: Sum_{k>=1} mu(k) * log(1 + tan(x^k)) / k.

A353820 Product_{n>=1} (1 + a(n)*x^n/n!) = 1 + arctan(x).

Original entry on oeis.org

1, 0, -2, 8, -16, 96, -832, 9344, -27648, 238080, -4228608, 55812096, -398991360, 4930609152, -98606039040, 2440552022016, -17762113880064, 235149341884416, -7331825098948608, 170578782435409920, -2009778629489197056, 38563016760590598144, -1278044473427380666368
Offset: 1

Views

Author

Ilya Gutkovskiy, May 08 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 23; f[x_] := Product[(1 + a[n] x^n/n!), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - 1 - ArcTan[x], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten

A353911 Product_{n>=1} 1 / (1 - a(n)*x^n/n!) = 1 + tan(x).

Original entry on oeis.org

1, -2, 2, -32, 56, -416, 3184, -85504, 309760, -4087552, 48104704, -546922496, 10591523840, -194387924992, 3133776259072, -129880886411264, 1249919350046720, -29073986250604544, 624022403933077504, -15137719350365519872, 381632216575339397120, -11149155036737662615552
Offset: 1

Views

Author

Ilya Gutkovskiy, May 10 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 22; f[x_] := Product[1/(1 - a[n] x^n/n!), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - 1 - Tan[x], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten

A354175 Product_{n>=1} (1 + x^n)^(a(n)/n!) = 1 + tan(x).

Original entry on oeis.org

1, 0, 2, -8, 56, -256, 3184, -36224, 273920, -2845696, 48104704, -676312064, 10591523840, -149454094336, 2888557717504, -72214957359104, 1249919350046720, -23620669488234496, 624022403933077504, -15637185047733469184, 372737701735949926400, -9655667879651150135296
Offset: 1

Views

Author

Ilya Gutkovskiy, May 18 2022

Keywords

Crossrefs

Programs

  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[c[i], j] b[n - i j, i - 1], {j, 0, n/i}]]]; c[n_] := c[n] = 2^(n + 1) (2^(n + 1) - 1) Abs[BernoulliB[n + 1]]/((n + 1) n!) - b[n, n - 1]; a[n_] := n! c[n]; Table[a[n], {n, 1, 22}]

Formula

E.g.f.: Sum_{k>=1} A067856(k) * log(1 + tan(x^k)) / k.

A353610 Product_{n>=1} (1 + a(n)*x^(2*n)/(2*n)!) = sec(x).

Original entry on oeis.org

1, 5, -14, 1777, -14744, 247994, -74928944, 42293543177, -1163849271296, 95795966018440, -44942000161435904, 4494117864138588514, -3539995034294896016384, 770158600620174924566672, -510461123036204706738612224, 1162153458061287151457003978297
Offset: 1

Views

Author

Ilya Gutkovskiy, May 07 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 16; f[x_] := Product[(1 + a[n] x^(2 n)/(2 n)!), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - Sec[x], {x, 0, 2 nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten

A353779 Product_{n>=1} (1 + a(n)*x^n/n!) = 1 + tanh(x).

Original entry on oeis.org

1, 0, -2, 8, -24, 144, -720, 7552, -35840, 427520, -3628800, 45415424, -479001600, 7094226944, -82614884352, 1741160087552, -20922789888000, 371094631612416, -6402373705728000, 137529198176370688, -2379913632645120000, 55730621780175355904
Offset: 1

Views

Author

Ilya Gutkovskiy, May 08 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 22; f[x_] := Product[(1 + a[n] x^n/n!), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - 1 - Tanh[x], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten
Showing 1-9 of 9 results.