cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A353607 Product_{n>=1} (1 + a(n)*x^n/n!) = 1 + sin(x).

Original entry on oeis.org

1, 0, -1, 4, -19, 114, -659, 5328, -38375, 400430, -3578279, 44920360, -476298835, 6949878740, -85215100151, 1492480745728, -20903398375855, 382829285287446, -6399968826052559, 136747967762351544, -2394435177245209195, 55602194767215266060, -1123931378903214542099
Offset: 1

Views

Author

Ilya Gutkovskiy, May 07 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 23; f[x_] := Product[(1 + a[n] x^n/n!), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - 1 - Sin[x], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten

A353608 Product_{n>=1} (1 + a(n)*x^n/n!) = 1 + sinh(x).

Original entry on oeis.org

1, 0, 1, -4, 21, -126, 1023, -8240, 84745, -864370, 10925883, -133566808, 1994183205, -28455880012, 489891177051, -8112780640000, 158096182329585, -2911196026492074, 64115697136312563, -1328879415116924744, 31920276313015362525, -728711636884140292372
Offset: 1

Views

Author

Ilya Gutkovskiy, May 07 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 22; f[x_] := Product[(1 + a[n] x^n/n!), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - 1 - Sinh[x], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten

A353611 Product_{n>=1} (1 + a(n)*x^n/n!) = 1 + tan(x).

Original entry on oeis.org

1, 0, 2, -8, 56, -336, 3184, -27264, 309760, -3297280, 48104704, -624745472, 10591523840, -159594803200, 3133776259072, -56224864108544, 1249919350046720, -24600643845095424, 624022403933077504, -14094091678163140608, 381632216575339397120, -9516741266133420605440
Offset: 1

Views

Author

Ilya Gutkovskiy, May 07 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 22; f[x_] := Product[(1 + a[n] x^n/n!), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - 1 - Tan[x], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten

A353609 Product_{n>=1} (1 + a(n)*x^(2*n)/(2*n)!) = cosh(x).

Original entry on oeis.org

1, 1, -14, 393, -14744, 972610, -74928944, 9322093753, -1163849271296, 228519734620776, -44942000161435904, 12717856972091286642, -3539995034294896016384, 1371560847857743301790928, -510461123036204706738612224, 268938575250382935485761673113
Offset: 1

Views

Author

Ilya Gutkovskiy, May 07 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 16; f[x_] := Product[(1 + a[n] x^(2 n)/(2 n)!), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - Cosh[x], {x, 0, 2 nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten

A353779 Product_{n>=1} (1 + a(n)*x^n/n!) = 1 + tanh(x).

Original entry on oeis.org

1, 0, -2, 8, -24, 144, -720, 7552, -35840, 427520, -3628800, 45415424, -479001600, 7094226944, -82614884352, 1741160087552, -20922789888000, 371094631612416, -6402373705728000, 137529198176370688, -2379913632645120000, 55730621780175355904
Offset: 1

Views

Author

Ilya Gutkovskiy, May 08 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 22; f[x_] := Product[(1 + a[n] x^n/n!), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - 1 - Tanh[x], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten
Showing 1-5 of 5 results.