cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A353583 Numerators of coefficients c(n) in product expansion of 1 + tan x = Product_{k>=1} 1 + c(k)*x^k.

Original entry on oeis.org

1, 0, 1, -1, 7, -7, 199, -71, 484, -368, 187909, -610103, 2068657, -63614, 1530164189, -1715846683, 7628902283, -125125345078, 9521826231889, -17921564328719, 291162274608871, -47147385565688, 552647133893696333, -36898601487519532, 4761064630028162378
Offset: 1

Views

Author

M. F. Hasler, May 07 2022

Keywords

Comments

See A353584 for the denominators, and A353586 for the analog for (tan x)/x.

Examples

			1 + tan x = (1 + x)(1 + 1/3*x^3)(1 - 1/3*x^4/3)(1 + 7/15*x^5)(1 - 7/15*x^5)(...),
and this sequence lists the numerators of (1, 0, 1/3, -1/3, 7/15, -7/15, ...).
		

Crossrefs

Cf. A353584 (denominators), A353586 / A353587 (similar for (tan x)/x).
Cf. A170918 / A170919 for a variant.

Programs

  • PARI
    t=1+tan(x+O(x)^29); vector(#t-1,n,c=polcoef(t,n);t/=1+c*x^n;numerator(c))

A353586 Numerators of coefficients c(n) in product expansion of (tan x)/x = Product_{k>=1} 1 + c(k)*x^(2k).

Original entry on oeis.org

1, 2, 1, 53, 91, 811, 73267, 35540711, 49830764, 34241488, 35249288479, 19259769465311, 732125336837021, 619038578481164306, 30015706187367326893, 16177789439326291541, 46789354983174555461, 498213391899375541476686, 248130101882943187003954597, 2572596069535443792125179632949
Offset: 1

Views

Author

M. F. Hasler, May 07 2022

Keywords

Comments

The coefficients of odd powers are zero since (tan x)/x is an even function.
See A353587 for the denominators, and A353583 (similar for 1 + tan x) for references and more.

Examples

			(tan x)/x = (1 + 1/3*x^2)(1 + 2/15*x^4)(1 + 1/105*x^6)(1 + 53/2835*x^8)...
and this sequence lists the numerators of (1/3, 2/15, 1/105, 53/2835, ...).
		

Crossrefs

Cf. A353587 (denominators); A353583 / A353584 (product expansion of 1 + tan x).
Cf. A170918 / A170919 for a variant.

Programs

  • PARI
    t=tan(x+O(x)^58)/x; vector(#t\2,n,c=polcoef(t,n*2);t/=1+c*x^(n*2);numerator(c))

A170919 a(n) = denominator of the coefficient c(n) of x^n in (tan x)/Product_{k=1..n-1} 1 + c(k)*x^k, n = 1, 2, 3, ...

Original entry on oeis.org

1, 1, 3, 3, 5, 45, 105, 315, 2835, 14175, 5775, 467775, 6081075, 2837835, 212837625, 70945875, 3618239625, 97692469875, 206239658625, 9280784638125, 1031198293125, 142924083427125, 322279795963125, 101111706320625, 136968913284328125, 161872352063296875
Offset: 1

Views

Author

N. J. A. Sloane, Jan 30 2010

Keywords

Examples

			1, -1, 7/3, -14/3, 54/5, -1112/45, 6574/105, -48488/315, 1143731/2835, ...
		

Crossrefs

Cf. A170918 (numerators), A170910-A170917.
Cf. A353583 / A353584 for power product expansion of 1 + tan x.
Cf. A353586 / A353587 for power product expansion of (tan x)/x.

Programs

  • Maple
    L := 28: g := NULL:
    t := series(tan(x), x, L):
    for n from 1 to L-2 do
       c := coeff(t, x, n);
       t := series(t/(1 + c*x^n), x, L);
       g := g, c;
    od: map(denom, [g]); # Based on Maple in A170918. - Peter Luschny, Oct 05 2019

Extensions

Following a suggestion from Ilya Gutkovskiy, name corrected so that it matches the data by Peter Luschny, May 12 2022

A170918 a(n) = numerator of the coefficient c(n) of x^n in (tan x)/Product_{0 < k < n} 1 + c(k)*x^k, n = 1, 2, 3, ...

Original entry on oeis.org

1, -1, 7, -14, 54, -1112, 6574, -48488, 1143731, -14813072, 16252211, -3500388967, 125127865048, -158589803803, 33133618166566, -30512906279732, 4378989933312913, -330336346477870319, 1981395373839282068, -251479418962683770473, 79893293800974935213, -31493610597939643431532
Offset: 1

Views

Author

N. J. A. Sloane, Jan 30 2010

Keywords

Examples

			1, -1, 7/3, -14/3, 54/5, -1112/45, 6574/105, -48488/315, 1143731/2835, ...
		

Crossrefs

Cf. A170919 (denominators), A170910-A170917.
Cf. A353583 / A353584 for power product expansion of 1 + tan x.
Cf. A353586 / A353587 for power product expansion of (tan x)/x.

Programs

  • Maple
    t1:=tan(x);
    L:=100;
    t0:=series(t1,x,L):
    g:=[]; M:=40; t2:=t0:
    for n from 1 to M do
    t3:=coeff(t2,x,n); t2:=series(t2/(1+t3*x^n),x,L); g:=[op(g),t3];
    od:
    g;
    g1:=map(numer,g);
    g2:=map(denom,g);
  • PARI
    t=tan(x+O(x)^25); vector(#t,n,c=polcoef(t,n);t/=1+c*x^n;numerator(c)) \\ M. F. Hasler, May 07 2022

Extensions

Following a suggestion from Ilya Gutkovskiy, name corrected so that it matches the data by M. F. Hasler, May 07 2022

A170923 a(n) = denominator of the coefficient c(n) of x^n in sqrt(1+x)/Product_{k=1..n-1} 1 + c(k)*x^k, n = 1, 2, 3, ...

Original entry on oeis.org

2, 8, 8, 128, 32, 512, 128, 32768, 128, 32768, 2048, 2097152, 8192, 2097152, 32768, 2147483648, 131072, 16777216, 524288, 34359738368, 2097152, 8589934592, 8388608, 35184372088832, 524288, 549755813888, 33554432, 562949953421312, 536870912, 35184372088832
Offset: 1

Views

Author

N. J. A. Sloane, Jan 31 2010

Keywords

Crossrefs

Cf. A170922 (numerators).
Cf. A353583 / A353584 for power product expansion of 1 + tan x.
Cf. A353586 / A353587 for power product expansion of (tan x)/x.

Programs

  • Maple
    L := 32: g := NULL:
    t := series(sqrt(1+x), x, L):
    for n from 1 to L-2 do
       c := coeff(t, x, n);
       t := series(t/(1 + c*x^n), x, L);
       g := g, c;
    od: map(denom, [g]); # Peter Luschny, May 12 2022

Extensions

Following a suggestion from Ilya Gutkovskiy, name corrected so that it matches the data by Peter Luschny, May 12 2022

A170922 a(n) = numerator of the coefficient c(n) of x^n in sqrt(1+x)/Product_{k=1..n-1} 1 + c(k)*x^k, n = 1, 2, 3, ...

Original entry on oeis.org

1, -1, 1, -13, 3, -37, 9, -1861, 7, -1491, 93, -81001, 315, -69705, 1083, -63586357, 3855, -438821, 13797, -822684711, 49689, -186369117, 182361, -704368012465, 10485, -10165801275, 619549, -9738266477517, 9256395, -566066862375, 34636833, -140047960975823893
Offset: 1

Views

Author

N. J. A. Sloane, Jan 31 2010

Keywords

Examples

			1/2, -1/8, 1/8, -13/128, 3/32, -37/512, 9/128, -1861/32768, ...
		

Crossrefs

Cf. A170923 (denominators).
Cf. A353583 / A353584 for power product expansion of 1 + tan x.
Cf. A353586 / A353587 for power product expansion of (tan x)/x.

Programs

  • Maple
    L := 34: g := NULL:
    t := series(sqrt(1+x), x, L):
    for n from 1 to L-2 do
       c := coeff(t, x, n);
       t := series(t/(1 + c*x^n), x, L);
       g := g, c;
    od: map(numer, [g]); # Peter Luschny, May 12 2022

Extensions

Following a suggestion from Ilya Gutkovskiy, name corrected so that it matches the data by Peter Luschny, May 12 2022

A170924 a(n) = numerator of the coefficient c(n) of x^n in (1/sqrt(1-x))/Product_{k=1..n-1} 1 + c(k)*x^k, n = 1, 2, 3, ...

Original entry on oeis.org

1, 3, 1, 27, 3, 39, 9, 2955, 7, 1737, 93, 88047, 315, 79779, 1083, 77010795, 3855, 488391, 13797, 905252529, 49689, 204066351, 182361, 756251509503, 10485, 10978530465, 619549, 10462007147787, 9256395, 603860858253, 34636833, 150202954242966315
Offset: 1

Views

Author

N. J. A. Sloane, Jan 31 2010

Keywords

Examples

			1/2, 3/8, 1/8, 27/128, 3/32, 39/512, 9/128, 2955/32768, 7/128, ...
		

Crossrefs

Cf. A170923 (denominators).
Cf. A353583 / A353584 for power product expansion of 1 + tan x.
Cf. A353586 / A353587 for power product expansion of (tan x)/x.

Programs

  • Maple
    L := 34: g := NULL:
    t := series(1/sqrt(1 - x), x, L):
    for n from 1 to L-2 do
       c := coeff(t, x, n);
       t := series(t/(1 + c*x^(n)), x, L);
       g := g, c;
    od: map(numer, [g]); # Peter Luschny, May 12 2022

Extensions

Following a suggestion from Ilya Gutkovskiy, name corrected so that it matches the data by Peter Luschny, May 12 2022
Showing 1-7 of 7 results.