cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157181 A new general triangle sequence based on the Eulerian form in three parts ( subtraction):m=3; t0(n,k)=If[n*k == 0, 1, Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}]] t(n,k,m)=If[n == 0, 1, ( m*(n - k) + 1)*t0(n - 1 + 1, k - 1) + (m*k + 1)*t0(n - 1 + 1, k) - m*k*(n - k)*t0(n - 2 + 1, k - 1)].

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 17, 17, 1, 1, 45, 106, 45, 1, 1, 105, 524, 524, 105, 1, 1, 229, 2231, 4258, 2231, 229, 1, 1, 481, 8547, 28771, 28771, 8547, 481, 1, 1, 989, 30424, 171283, 290126, 171283, 30424, 989, 1, 1, 2009, 102926, 928070, 2505074, 2505074, 928070
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Feb 24 2009

Keywords

Comments

Row sums are:
{1, 2, 7, 36, 198, 1260, 9180, 75600, 695520, 7076160, 78926400,...}.
The m=0 of the general sequence is A008518.

Examples

			{1},
{1, 1},
{1, 5, 1},
{1, 17, 17, 1},
{1, 45, 106, 45, 1},
{1, 105, 524, 524, 105, 1},
{1, 229, 2231, 4258, 2231, 229, 1},
{1, 481, 8547, 28771, 28771, 8547, 481, 1},
{1, 989, 30424, 171283, 290126, 171283, 30424, 989, 1},
{1, 2009, 102926, 928070, 2505074, 2505074, 928070, 102926, 2009, 1},
{1, 4053, 336109, 4684096, 19330402, 30217078, 19330402, 4684096, 336109, 4053, 1}
		

Crossrefs

Programs

  • Mathematica
    Clear[t, n, k, m];
    t[n_, k_, m_] = (m*(n - k) + 1)*Binomial[n - 1, k - 1] + (m*k + 1)*Binomial[n - 1, k] - m*k*(n - k)*Binomial[n - 2, k - 1];
    Table[t[n, k, m], {m, 0, 10}, {n, 0, 10}, {k, 0, n}];
    Table[Flatten[Table[Table[t[n, k, m], {k, 0, n}], {n, 0, 10}]], {m, 0, 10}]
    Table[Table[Sum[t[n, k, m], {k, 0, n}], {n, 0, 10}], {m, 0, 10}];

Formula

m=3;
t0(n,k)=If[n*k == 0, 1, Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}]];
t(n,k,m)=If[n == 0, 1, ( m*(n - k) + 1)*t0(n - 1 + 1, k - 1) +
(m*k + 1)*t0(n - 1 + 1, k) +
m*k*(n - k)*t0(n - 2 + 1, k - 1)].