A157306 G.f. A(x) satisfies the condition that both G(x) = A(x/G(x)) and H(x) = A(x*H(x)) have zeros for every other coefficient after initial terms; g.f. of dual sequence A157303 satisfies the same condition.
1, 1, -1, -5, 23, 151, -1249, -10961, 122975, 1380703, -18981121, -261461441, 4220277887, 69016559743, -1278668869633, -24212706029825, 507099112447487, 10908810091109887, -255195984676134913, -6145413122840501249
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x - x^2 - 5*x^3 + 23*x^4 + 151*x^5 - 1249*x^6 -++-... ... Let G(x) = A(x/G(x)) so that A(x) = G(x*A(x)) then G(x) = 1 + x - 2*x^2 + 26*x^4 - 1378*x^6 + 141202*x^8 -+... has alternating zeros in the coefficients (cf. A157305): [1,1,-2,0,26,0,-1378,0,141202,0,-22716418,0,5218302090,0,...] ... Let H(x) = A(x*H(x)) so that A(x) = H(x/A(x)) then H(x) = 1 + x - 7*x^3 + 242*x^5 - 17771*x^7 + 2189294*x^9 -+... has alternating zeros in the coefficients (cf. A157307): [1,1,0,-7,0,242,0,-17771,0,2189294,0,-404590470,0,104785114020,0,...] ... ZERO COEFFICIENTS IN POWERS OF G.F. A(x). Odd powers A(x)^(2n+1) yield zeros at even positions 2n for n>=1: A^3: [1,3, 0, -20,39,609,-2806,-41598,302361,4976719,...]; A^5: [1,5,5,-35, 0, 1176,-2530,-80630,359635,9462895,...]; A^7: [1,7,14,-42,-98,1694, 0, -122408,263963,14465941,...]; A^9: [1,9,27,-33,-243,1989,4797,-159939, 0, 19515184,...]; ... Even negative powers 1/A(x)^(2n) yield zeros at odd positions 2n+1 for n>=1: A^-2: [1,-2,5, 0, -56,-112,2916,12112,-284944,-1831680,...]; A^-4: [1,-4,14,-20,-87, 0, 5720,11440,-586040,-2389920,...]; A^-6: [1,-6,27,-68,-33,186,7865, 0, -865776,-1731552,...]; A^-8: [1,-8,44,-152,182,136,9404,-19400,-1095871, 0, ...]; ...
Programs
-
PARI
{a(n)=local(A=[1, 1]); for(i=1, n, if(#A%2==0, A=concat(A, t); A[ #A]=-subst(Vec(serreverse(x/Ser(A)))[ #A], t, 0)); if(#A%2==1, A=concat(A, t); A[ #A]=-subst(Vec(x^2/serreverse(x*Ser(A)))[ #A], t, 0))); A[n+1]}
Comments