A157305 G.f. A(x) satisfies the condition that both A(x) and F(x) = A(x*F(x)^2) have zeros for every other coefficient after initial terms; dual sequence A157302 satisfies the same condition.
1, 1, -2, 0, 26, 0, -1378, 0, 141202, 0, -22716418, 0, 5218302090, 0, -1619288968386, 0, 653379470919714, 0, -333014944014777730, 0, 209463165121436380282, 0, -159492000935562428176162, 0, 144654795258284936534929586, 0
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x - 2*x^2 + 26*x^4 - 1378*x^6 + 141202*x^8 -+... ... Let F(x) = A(x*F(x)^2) so that A(x) = F(x/A(x)^2) then F(x) = 1 + x - 7*x^3 + 242*x^5 - 17771*x^7 + 2189294*x^9 -+... has alternating zeros in the coefficients (cf. A157304): [1,1,0,-7,0,242,0,-17771,0,2189294,0,-404590470,0,104785114020,0,...]. ... COEFFICIENTS IN ODD POWERS OF G.F. A(x). A^1: [(1),1,-2,0,26,0,-1378,0,141202,0,-22716418,0,...]; A^3: [1,(3),-3,-11,84,168,-4376,-8580,438348,865776,...]; A^5: [1,5,(0),-30,115,601,-7120,-30280,726680,2987400,...]; A^7: [1,7,7,(-49),91,1253,-8743,-65519,964768,6410880,...]; A^9: [1,9,18,-60,(0),1998,-8418,-112284,1106775,11070241,...]; A^11:[1,11,33,-55,-154,(2662),-5566,-166034,1108657,...]; A^13:[1,13,52,-26,-351,3055,(0),-220116,935051,23169939,...]; A^15:[1,15,75,35,-555,3003,7995,(-266565),565635,29818365,...]; A^17:[1,17,102,136,-714,2380,17646,-297160,(0),36161142,...]; A^19:[1,19,133,285,-760,1140,27740,-304608,-739670,(41596586),...]; ... When scaled, the coefficients shown above in parenthesis forms the coefficients of the function F(x) = A(x*F(x)^2): F: [1,3/3,0,-49/7,0,2662/11,0,-266565/15,0,41596586/19,0,...].
Programs
-
PARI
{a(n)=local(A=[1, 1]); for(i=1, n, if(#A%2==0, A=concat(A, t); A[ #A]=-subst(Vec(serreverse(x/Ser(A)))[ #A], t, 0)); if(#A%2==1, A=concat(A, t); A[ #A]=-subst(Vec(x/serreverse(x*Ser(A)))[ #A], t, 0))); Vec(x/serreverse(x*Ser(A)))[n+1]}