A157307 G.f. A(x) satisfies the condition that both A(x) and F(x) = A(x/F(x)^2) have zeros for every other coefficient after initial terms; g.f. of dual sequence A157304 satisfies the same condition.
1, 1, 0, -7, 0, 242, 0, -17771, 0, 2189294, 0, -404590470, 0, 104785114020, 0, -36267349272243, 0, 16185534555969878, 0, -9056084951164614194, 0, 6210575966204050489916, 0, -5124228589785627978616702, 0
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x - 7*x^3 + 242*x^5 - 17771*x^7 + 2189294*x^9 -+... ... Let F(x) = A(x/F(x)^2) so that A(x) = F(x*A(x)^2) then F(x) = 1 + x - 2*x^2 + 26*x^4 - 1378*x^6 + 141202*x^8 -+... has alternating zeros in the coefficients (cf. A157305): [1,1,-2,0,26,0,-1378,0,141202,0,-22716418,0,5218302090,0,...]. ... COEFFICIENTS IN ODD NEGATIVE POWERS OF G.F. A(x). A^1 : [(1),1,0,-7,0,242,0,-17771,0,2189294,0,-404590470,0,...]; A^-1: [1,(-1),1,6,-13,-222,506,16932,-37709,-2127126,4595294,...]; A^-3: [1,-3,(6),11,-69,-537,2806,45282,-215781,-5963673,...]; A^-5: [1,-5,15,(0),-140,-601,6245,62380,-503935,-8911515,...]; A^-7: [1,-7,28,-35,(-182),-392,9968,65519,-860825,-10670499,...]; A^-9: [1,-9,45,-102,-135,(0),13128,54504,-1240416,-11070241,...]; A^-11:[1,-11,66,-209,77,341,(15158),31460,-1598696,-10074240,...]; A^-13:[1,-13,91,-364,546,221,16107,(0),-1899508,-7767240,...]; A^-15:[1,-15,120,-575,1380,-978,17040,-36375,(-2118030),...]; A^-17:[1,-17,153,-850,2703,-4114,20502,-76772,-2240175,(0),...]; ... When scaled, the coefficients shown above in parenthesis forms the coefficients of the function F(x) = A(x/F(x)^2): F: [1,-1/(-1),6/(-3),0,-182/(-7),0,15158/(-11),0,-2118030/(-15),0,...].
Programs
-
PARI
{a(n)=local(A=[1, 1]); for(i=1, n, if(#A%2==0, A=concat(A, t); A[ #A]=-subst(Vec(serreverse(x/Ser(A)))[ #A], t, 0)); if(#A%2==1, A=concat(A, t); A[ #A]=-subst(Vec(x/serreverse(x*Ser(A)))[ #A], t, 0))); Vec(serreverse(x/Ser(A))/x)[n+1]}