cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157354 Products of 3 distinct safe primes.

Original entry on oeis.org

385, 805, 1265, 1645, 1771, 2065, 2585, 2905, 3245, 3619, 3745, 4543, 4565, 5405, 5845, 5885, 6265, 6391, 6785, 7567, 7945, 8239, 9185, 9205, 9499, 9545, 9845, 11891, 12145, 12305, 12485, 12565, 12859, 13363, 13405, 13783, 13865, 14465, 14927
Offset: 1

Views

Author

Keywords

Examples

			385=5*7*11; 5,7 and 11 are safe primes.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[If[Plus@@Last/@FactorInteger[n]==3,a=Length[First/@FactorInteger[n]];If[a==3,b=First/@FactorInteger[n];c=b[[1]];d=b[[2]];e=b[[3]];If[PrimeQ[(c-1)/2]&&PrimeQ[(d-1)/2]&&PrimeQ[(e-1)/2],AppendTo[lst,n]]]],{n,7!}];lst
  • PARI
    list(lim)=my(v=List(),P=select(p->isprime(p\2), primes([5,sqrtint(lim\5+1)-1])),p,q,t); for(i=1,#P, p=P[i]; if(p^3>=lim, break); for(j=i+1,#P, q=P[j]; t=p*q; forprime(r=q+4,lim\t, if(isprime(r\2), listput(v,r*t))))); Set(v); \\ Charles R Greathouse IV, Oct 14 2021