A157354 Products of 3 distinct safe primes.
385, 805, 1265, 1645, 1771, 2065, 2585, 2905, 3245, 3619, 3745, 4543, 4565, 5405, 5845, 5885, 6265, 6391, 6785, 7567, 7945, 8239, 9185, 9205, 9499, 9545, 9845, 11891, 12145, 12305, 12485, 12565, 12859, 13363, 13405, 13783, 13865, 14465, 14927
Offset: 1
Examples
385=5*7*11; 5,7 and 11 are safe primes.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
lst={};Do[If[Plus@@Last/@FactorInteger[n]==3,a=Length[First/@FactorInteger[n]];If[a==3,b=First/@FactorInteger[n];c=b[[1]];d=b[[2]];e=b[[3]];If[PrimeQ[(c-1)/2]&&PrimeQ[(d-1)/2]&&PrimeQ[(e-1)/2],AppendTo[lst,n]]]],{n,7!}];lst
-
PARI
list(lim)=my(v=List(),P=select(p->isprime(p\2), primes([5,sqrtint(lim\5+1)-1])),p,q,t); for(i=1,#P, p=P[i]; if(p^3>=lim, break); for(j=i+1,#P, q=P[j]; t=p*q; forprime(r=q+4,lim\t, if(isprime(r\2), listput(v,r*t))))); Set(v); \\ Charles R Greathouse IV, Oct 14 2021