A157407 The integer partitions of n taken as digits in base n+1 and listed in the reflected Hindenburg order.
0, 1, 4, 2, 21, 6, 3, 156, 32, 12, 8, 4, 1555, 260, 50, 45, 15, 10, 5, 19608, 2802, 408, 114, 402, 66, 24, 60, 18, 12, 6, 299593, 37450, 4690, 658, 4683, 595, 147, 91, 588, 84, 28, 77, 21, 14, 7
Offset: 0
Examples
[0] <-> [[ ]] [1] <-> [[1]] [4,2] <-> [[1,1],[2]] [21,6,3] <-> [[1,1,1],[2,1],[3]] [156,32,12,8,4] <-> [[1,1,1,1],[2,1,1],[2,2],[3,1],[4]]
Links
- Peter Luschny, Counting with Partitions.
Crossrefs
Cf. A157406
Programs
-
Maple
a := proc(n) local rev,P,R,Q,i,l,s,k,j; rev := l -> [seq(l[nops(l)-j+1],j=1..nops(l))]; P := combinat[partition](n); R := NULL; for i to nops(P) do Q := rev(P[i]); l := convert(Q,base,n+1,10); s := add(l[k]*10^(k-1), k=1..nops(l)); R:= R,s; od; R end: [0,seq(a(i),i=1..7)];
Comments