A157406 The integer partitions of n taken as digits in base n+1 and listed in the Hindenburg order.
0, 1, 2, 4, 3, 9, 21, 4, 16, 12, 56, 156, 5, 25, 20, 115, 85, 475, 1555, 6, 36, 30, 204, 24, 162, 1086, 114, 792, 5202, 19608, 7, 49, 42, 329, 35, 273, 2121, 217, 210, 1673, 12873, 1169, 9289, 70217, 299593
Offset: 0
Examples
[0] <-> [[ ]] [1] <-> [[1]] [2,4] <-> [[2],[1,1]] [3,9,21] <-> [[3],[1,2],[1,1,1]] [4,16,12,56,156] <-> [[4],[1,3],[2,2],[1,1,2],[1,1,1,1]]
Links
- Peter Luschny, Counting with Partitions.
Crossrefs
Cf. A157407
Programs
-
Maple
a := proc(n) local rev,P,R,i,l,s,k,j; rev := l -> [seq(l[nops(l)-j+1],j=1..nops(l))]; P := rev(combinat[partition](n)); R := NULL; for i to nops(P) do l := convert(P[i],base,n+1,10); s := add(l[k]*10^(k-1),k=1..nops(l)); R := R,s; od; R end: [0,seq(a(i),i=1..7)];
Comments