A157440 a(n) = 121*n^2 - 204*n + 86.
3, 162, 563, 1206, 2091, 3218, 4587, 6198, 8051, 10146, 12483, 15062, 17883, 20946, 24251, 27798, 31587, 35618, 39891, 44406, 49163, 54162, 59403, 64886, 70611, 76578, 82787, 89238, 95931, 102866, 110043, 117462, 125123, 133026, 141171
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Vincenzo Librandi, X^2-AY^2=1
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
I:=[3, 162, 563]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jan 29 2012
-
Mathematica
LinearRecurrence[{3,-3,1},{3,162,563},50] (* Vincenzo Librandi, Jan 29 2012 *)
-
PARI
a(n)=121*n^2-204*n+86 \\ Charles R Greathouse IV, Dec 28 2011
Formula
G.f.: x*(-3 - 153*x - 86*x^2)/(x-1)^3. - Vincenzo Librandi, Jan 29 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jan 29 2012
Comments