A157450 a(n) = the n-th divisor of the smallest positive integer with exactly n^2 divisors.
1, 2, 3, 4, 6, 6, 9, 8, 10, 10, 24, 12, 32, 16, 18, 18, 64, 21, 81, 22, 28, 32, 144, 27, 40, 42, 36, 35, 288, 39, 384, 39, 56, 70, 63, 45, 729, 84, 75, 52, 1024, 56, 1296, 66, 66, 128, 1944, 60, 112, 78, 126, 88, 3072, 78, 140, 78, 150, 224, 5184, 81, 6144, 256, 104, 90
Offset: 1
Examples
The smallest positive integer with 5^2 divisors = A061707(5) = 1296. The first 5 of the 25 divisors of 1296 are: 1,2,3,4,6. Since the 5th divisor is 6, then a(5) = 6.
Links
- Robert Israel, Table of n, a(n) for n = 1..5536
Crossrefs
Cf. A061707.
Programs
-
Maple
g:= proc(n, k) # lists of integers > k whose product is n option remember; local F, m; if n = 1 then return [[]] elif k >= n then return [] fi; F:= select(`>`, numtheory:-divisors(n), k); [seq(op(map(t -> [m, op(t)], procname(n/m, m-1))), m=F)] end proc: h:= proc(L) local i; mul(ithprime(i)^(L[i]-1),i=1..nops(L)) end proc: f:= proc(n) local C,x,D; C:= map(sort,g(n^2,1),`>`); x:= min(map(h,C)); D:= sort(convert(numtheory:-divisors(x),list)); D[n] end proc: map(f, [$1..70]); # Robert Israel, Jan 21 2025
Extensions
More terms from R. J. Mathar, Mar 14 2009
a(45)-a(64) from Ray Chandler, Jun 19 2009