A157608 Array read by antidiagonals, giving number of fixed hexagonal polyominoes of height up to n/2 and with hexagonal cell count k.
0, 1, 0, 1, 0, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 3, 6, 2, 0, 0, 1, 3, 10, 11, 2, 0, 0, 1, 3, 11, 25, 19, 2, 0, 0, 1, 3, 11, 37, 61, 32, 2, 0, 0, 1, 3, 11, 43, 111, 142, 53, 2, 0, 0, 1, 3, 11, 44, 153, 320, 323, 87, 2, 0, 0, 1, 3, 11, 44, 177, 514, 896, 723, 142, 2, 0, 0
Offset: 1
Examples
The array begins: ================================================ n=1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | n=2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | n=3 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | n=4 | 1 | 3 | 6 | 11 | 19 | 32 | 53 | 87 | n=5 | 1 | 3 | 10 | 25 | 61 | 142 | 323 | 723 | n=6 | 1 | 3 | 11 | 37 | 111 | 320 | 896 | 2461 | ================================================
Links
- Moa Apagodu (formerly Mohamud Mohammed) and Stirling Chow, Counting hexagonal lattice animals confined to a strip, arXiv:math/0202295v5 [math.CO], 2009. See Table 1.
- Moa Apagodu, Maple programs.
Programs
Formula
T(n, k) = A001207(k) for n >= 2*k. - Andrey Zabolotskiy, Aug 31 2024
Extensions
Definition not clear to me! "Height" refers to the lattice or to the polyominoes? - N. J. A. Sloane, Mar 14 2009
Name clarified and more terms added by Andrey Zabolotskiy, Aug 24 2024