A229221 Numbers k such that k - (product of digits of k) is prime.
21, 23, 27, 29, 41, 43, 47, 49, 81, 83, 87, 89, 101, 103, 107, 109, 127, 141, 143, 149, 181, 187, 223, 227, 229, 241, 247, 251, 253, 263, 271, 277, 293, 299, 307, 343, 347, 349, 367, 383, 389, 401, 409, 413, 417, 419, 431, 433, 437, 439, 451, 457, 471, 473, 477, 479, 481, 487, 503, 509, 527, 529, 541
Offset: 1
Crossrefs
Cf. A157676.
Programs
-
Mathematica
fQ[n_] := Module[{q = n - Times @@ IntegerDigits[n]}, q > 0 && PrimeQ[q]]; Select[Range[500], fQ] (* T. D. Noe, Sep 17 2013 *)
-
PARI
for(n=1,10^3,d=digits(n);p=prod(i=1,#d,d[i]);if(isprime(n-p),print1(n,", "))) \\ Derek Orr, Apr 10 2015
-
Python
from sympy import isprime def DP(n): p = 1 for i in str(n): p *= int(i) return p {print(n,end=', ') for n in range(10**3) if isprime(n-DP(n))} ## Simplified by Derek Orr, Apr 10 2015
-
Sage
[x for x in range(1000) if (x-prod(Integer(x).digits(base=10))) in Primes()] # Tom Edgar, Sep 18 2013
Extensions
More terms from Derek Orr, Apr 10 2015
Comments