A157702 G.f.s of the z^p coefficients of the polynomials in the GF1 denominators of A156921.
1, 1, 1, 7, 26, 7, 3, 166, 951, 951, 166, 3, 263, 8999, 59637, 108602, 59637, 8999, 263, 174, 33124, 848555, 6062651, 15477896, 15477896, 6062651, 848555, 33124, 174, 45, 66963, 5856626, 122966782, 920090513
Offset: 0
Examples
Some PDGF1 (z;n) are: PDGF1(z;n=3) = (1-5*z)*(1-3*z)^2*(1-z)^3 PDGF1(z;n=4) = ((1-7*z)*(1-5*z)^2*(1-3*z)^3*(1-z)^4) The first few GFKT1's are: GFKT1(z;p=0) = 1/(1-z) GFKT1(z;p=1) = -z*(1+z)/(1-z)^4 GFKT1(z;p=2) = z^2*(7+26*z+7*z^2)/(1-z)^7 Some KT1(z;p) polynomials are: KT1(z;p=2) = 7+26*z+7*z^2 KT1(z;p=3) = 3+166*z+951*z^2+951*z^3+166*z^4+3*z^5 KT1(z;p=4) = 263+8999*z+59637*z^2+108602*z^3+59637*z^4+8999*z^5+263*z^6
Crossrefs
Programs
-
Maple
p:=2; fn:=sum((-1)^(n1+1)*binomial(3*p+1,n1) *a(n-n1),n1=1..3*p+1): fk:=rsolve(a(n) = fn, a(k)): for n2 from 0 to 3*p+1 do fz(n2):=product((1-(2*m-1)*z)^(n2+1-m),m=1..n2); a(n2):= coeff(fz(n2),z,p); end do: b:=n-> a(n): seq(b(n), n=0..3*p+1); a(n)=fn; a(k)=sort(simplify(fk)); GFKT1(p):=(sum(fk*z^k,k=0..infinity)); q1:=ldegree((numer(GFKT1(p)))): KT1(p):=sort((-1)^p*simplify((GFKT1(p))*(1-z)^(3*p+1)/z^q1),z, ascending);
Formula
PDGF1(z;n) = Product_{m=1..n} (1-(2*m-1)*z)^(n+1-m) with n = 1, 2, 3, ... .
GFKT1(z;p) = (-1)^(p)*(z^q1)*KT1(z, p)/(1-z)^(3*p+1) with p = 0, 1, 2, ... .
The recurrence relation for the z^p coefficients a(n) is a(n) = Sum_{k=1..3*p+1} (-1)^(k+1)*binomial(3*p + 1, k)*a(n-k) with p = 0, 1, 2, ... .
Comments