A157703 G.f.s of the z^p coefficients of the polynomials in the GF2 denominators of A156925.
1, 1, 5, 5, 2, 62, 152, 62, 2, 91, 1652, 5957, 5957, 1652, 91, 52, 5240, 77630, 342188, 551180, 342188, 77630, 5240, 52, 12, 8549, 424921, 5629615, 28123559, 61108544, 61108544, 28123559, 5629615, 424921, 8549, 12
Offset: 0
Examples
Some PDGF2 (z;n) are: PDGF2(z;n=3) = (1-z)^3*(1-2*z)^2*(1-3*z) PDGF2(z;n=4) = (1-z)^4*(1-2*z)^3*(1-3*z)^2*(1-4*z) The first few GFKT2's are: GFKT2(z;p=0) = 1/(1-z) GFKT2(z;p=1) = -z/(z-1)^4 GFKT2(z;p=2) = z^2*(5+5*z)/(1-z)^7 Some KT2(z,p) polynomials are: KT2(z;p=2) = 5+5*z KT2(z;p=3) = 2+62*z+152*z^2+62*z^3+2*z^4 KT2(z;p=4) = 91+1652*z+5957*z^2+5957*z^3+1652*z^4+91*z^5
Crossrefs
Programs
-
Maple
p:=2; fn:=sum((-1)^(n1+1)*binomial(3*p+1,n1) *a(n-n1),n1=1..3*p+1): fk:=rsolve(a(n) = fn,a(k)): for n2 from 0 to 3*p+1 do fz(n2):=product((1-m*z)^(n2+1-m),m=1..n2): a(n2):= coeff(fz(n2),z,p): end do: b:=n-> a(n): seq(b(n), n=0..3*p+1); a(n)=fn; a(k)=sort(simplify(fk)); GFKT2(p):=sum((fk)*z^k,k=0..infinity); q2:=ldegree((numer(GFKT2(p)))): KT2(p):=sort((-1)^p*simplify((GFKT2(p)*(1-z)^(3*p+1))/z^q2),z, ascending);
Formula
PDGF2(z;n) = Product_{m=1..n} (1-m*z)^(n+1-m) with n = 1, 2, 3, ...
GFKT2(z;p) = (-1)^(p)*(z^q2)*KT2(z, p)/(1-z)^(3*p+1) with p = 0, 1, 2, ...
The recurrence relation for the z^p coefficients a(n) is a(n) = Sum_{k=1..3*p+1} (-1)^(k+1)*binomial(3*p + 1, k)*a(n-k) with p = 0, 1, 2, ... .
Comments