A157708 The z^2 coefficients of the polynomials in the GF4 denominators of A156933.
18, 254, 1571, 6335, 19615, 50743, 115234, 237066, 451320, 807180, 1371293, 2231489, 3500861, 5322205, 7872820, 11369668, 16074894, 22301706, 30420615, 40866035, 54143243, 70835699, 91612726
Offset: 1
Programs
-
Maple
nmax:=23; for n from 0 to nmax do fz(n):=product((1-(2*n+1-2*k)*z)^(3*k+1), k=0..n); c(n):= coeff(fz(n),z,2); end do: a:=n-> c(n): seq(a(n), n=1..nmax);
Formula
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7)
a(n) = 1/2*n^6+5/2*n^5+41/8*n^4+67/12*n^3+27/8*n^2+11/12*n
G.f.: (18 + 128*z + 171*z^2 + 42*z^3 + z^4)/(1-z)^7
Comments